非可換環
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/17 01:57 UTC 版)
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b•a なる R の元 a, b が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる[1]。
例
可換でない環の例をいくつか挙げる:
歴史
幾何学から生じる可除環を始まりとして、非可換環の研究は現代代数学の主要な分野に成長している。非可換環の理論と解釈は数多くの著者たちによって19世紀と20世紀に拡張、洗練された。
そのような貢献をした人を何人か挙げる:E. Artin, Richard Brauer, P. M. Cohn, W. R. Hamilton, I. N. Herstein, N. Jacobson, 森田紀一、E. Noether, Ø. Ore.
可換環論と非可換環論の違い
非可換環は可換環よりもはるかに広いクラスであるから、非可換環の構造や振る舞いは可換環ほど解明されていない。多くの成果は可換環の結果を非可換環に一般化することによって得られてきた。可換環と非可換環の主な違いは右イデアルと左イデアルを考える必要性である。非可換環の研究者にとってこれらのイデアルの一方にある条件を課しもう一方には課さないということはよくあることだが、可換環では左右の違いが存在しない。
非可換環の重要なクラス
可除環
可除環あるいは斜体とは、除法が可能な環である。つまり、0 でない任意の元 a が乗法逆元、すなわち a·x = x·a = 1 なる元 x を持つような、零環ではない環である[2]。別の言い方をすれば、環が可除環であることと単元群が 0 でない元全体であることが同値である。
可除環が可換体と唯一異なるのは乗法が可換であると仮定されないということである。しかしながら、ウェダーバーンの小定理によって、すべての有限可除環は可換でありしたがって有限体である。歴史的には、英語では可除環は field と呼ばれることもあり、一方可換体は “commutative field” と呼ばれた。日本語では、現在でも体は可換体を指すことも可除環を指すこともある。
半単純環
(可換とは限らない)単位的環上の加群が半単純(あるいは完全可約)であるとは、単純(既約)部分加群の直和であるということである。
環が(左)半単純であるとは、自身の上の左加群として半単純であることをいう。驚くべきことに、左半単純環は右半単純環でもあり、逆もまた然り。それゆえ左右の区別は不要である。
半原始環
代数学において、半原始環、あるいはジャコブソン半単純環、あるいは J-半単純環とは、ジャコブソン根基が 0 であるような環のことである。これは半単純環よりも一般的なタイプの環であるが、単純加群はなお環についての十分な情報を与えてくれる。整数環のような環は半原始環であり、アルティン的半原始環はちょうど半単純環である。半原始環は原始環の部分直積 として理解することができ、それはジャコブソンの稠密定理によって述べられている。
単純環
単純環 (simple ring) とは、自身と零イデアルの他に両側イデアルを持たない、零環でない環である。単純環は必ず単純多元環 (simple algebra) と考えることができる。環としては単純だが加群としては単純でない環が存在する。例えば、可換体上の 2 次以上の全行列環は、(M(n, R) の任意のイデアルは、R のイデアル I に対して M(n, I) の形であるから)非自明なイデアルを持たないが、非自明な左イデアル(すなわちある固定された列が 0 である行列全体の集合)を持つ。
アルティン・ウェダーバーンの定理によって、左または右アルティンであるすべての単純環は、可除環上の行列環である。特に、実数体上有限次元のベクトル空間である単純環は、実数体、複素数体、四元数体のいずれかの上の行列環のみである。
任意の極大イデアルによる剰余環は単純環である。特に、体は単純環である。環 R が単純であることと逆転環 Ro が単純であることは同値である。
可除環上の行列環ではない単純環の例はワイル代数である。
重要な定理
ウェダーバーンの小定理
ウェダーバーンの小定理はすべての有限域が可換体であることを述べるものである。言い換えると、有限環において、域、斜体、可換体の違いはない。
アルティン・ツォルンの定理はこの定理を交代環へと一般化する: すべての有限単純交代環は体である[3]。
アルティン・ウェダーバーンの定理
アルティン・ウェダーバーンの定理は半単純環と半単純多元環の分類定理である。定理が述べているのは、(アルティン的[4])半単純環 R はある整数 ni に対して可除環 Di 上の有限個の ni 次行列環の積に同型である。ni と Di は両方とも添え字 i の置換を除いて一意的に決定される。とくに、任意の単純左または右アルティン環は可除環 D 上の n 次行列環に同型で、n と D は両方とも一意的に決まる[5]。
直接の系として、アルティン・ウェダーバーンの定理は可除環上有限次元のすべての単純環(単純多元環)は行列環であることを意味する。これはジョセフ・ウェダーバーンのもともとの結果である。エミール・アルティンは後にそれをアルティン環の場合に一般化した。
ジャコブソンの稠密性定理
ジャコブソンの稠密性定理 (Jacobson density theorem) は環 R 上の単純加群に関する定理である[6]。
定理を使って任意の原始環をベクトル空間の線型変換の環の「稠密な」部分環と見ることができる[7][8]。この定理は1945年に最初に文献に現れた。Nathan Jacobson による有名な論文 "Structure Theory of Simple Rings Without Finiteness Assumptions" である[9]。この定理は単純アルティン環の構造についてのアルティン・ウェダーバーンの定理の結論のある種の一般化と見ることができる。
よりフォーマルに、定理は以下のように述べることができる:
- ジャコブソンの稠密性定理。 U を単純右 R-加群とし、D = End(UR) とし, X ⊂ U を D-線型独立な有限集合とする。A が U 上の D-線型変換であれば、ある r ∈ R が存在して、すべての x ∈ X に対して、A(x) = x • r となる[10]。
中山の補題
補題は非可換単位的環 R 上の右加群に対しても成り立つ。結果の定理は ジャコブソン・東屋の定理 (Jacobson–Azumaya theorem) と呼ばれることもある[11]。
J(R) を R のジャコブソン根基とする。U が環 R 上の右加群で I が R の右イデアルであれば、U·I を u·i の形の元のすべての(有限)和の集合、ただし · は単純に R の U 上の作用、と定義する。U·I は U の部分加群である。
V が U の極大部分加群であれば、U/V は単純加群である。なので U·J(R) は J(R) の定義と U/V が単純であるという事実によって V の部分集合である[12]。したがって、U が少なくとも1つの(真の)極大部分加群を含めば、U·J(R) は U の真の部分加群である。しかしながら、これは R 上の任意の加群 U に対しては成り立つとは限らない、というのも U が極大部分加群を含まないこともあるからだ[13]。もちろん、U がネーター加群であれば、これは成り立つ。R がネーター環であり U が有限生成であれば、U は R 上のネーター加群であり、結論が成り立つ[14]。注目すべきなのはより弱い仮定、すなわち U が R-加群として有限生成(R についての有限性の仮定はない)で結論を保証するのに十分であるということである。本質的にこれが中山の補題のステートメントである[15]。
正確に言えば、
- 中山の補題: U を環 R 上の有限生成右加群とする。U が 0 でなければ、U·J(R) は U の真の部分加群である[15]。
非可換の局所化
環の局所化は、環に乗法逆元を機械的に添加する方法である。すなわち、環 R とその部分集合 S が与えられたとき、環 R′と R から R′への環準同型を構成して、S の準同型像が R′における単元(可逆元)のみからなるようにする。さらに、R′が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 R の部分集合 S による局所化は S−1R で表され、あるいは S が素イデアル
非可換環
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/03/15 08:14 UTC 版)
「主イデアルに関する昇鎖条件」の記事における「非可換環」の解説
非可換の場合には、右 ACCP と左 ACCP を区別する必要が出てくる。前者は xR の形のイデアルの半順序集合が昇鎖条件を満たすということを要求するだけであり、後者は Rx の形のイデアルの半順序集合を検査するだけである。 今は "Bass' Theorem P" と呼ばれている、(Bass 1960) にある Hyman Bass(英語版) による定理は、環 R の主左イデアルについての降鎖条件は R が右完全環であることと同値であることを示した。D. Jonah は (Jonah 1970) において ACCP と完全環の間に side-switching connection が存在することを示した。R が右完全(右 DCCP を満たす)ならば R は左 ACCP を満たすことと、対称的に、R が左完全(左 DCCP を満たす)ならば右 ACCP を満たすことが示された。逆は正しくなく、上の左と右の切り替えは打ち間違いではない。 ACCP が R の右側について成り立とうと左側について成り立とうと、それは R が 0 でない直交冪等元の無限集合を持たないことと R がデデキント有限環であることを意味する。
※この「非可換環」の解説は、「主イデアルに関する昇鎖条件」の解説の一部です。
「非可換環」を含む「主イデアルに関する昇鎖条件」の記事については、「主イデアルに関する昇鎖条件」の概要を参照ください。
- 非可換環のページへのリンク