斜体_(数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 斜体_(数学)の意味・解説 

斜体 (数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/12 20:31 UTC 版)

斜体(しゃたい、: skew field; 歪体, : Schiefkörper, : corps, corps gauche)は加減乗除が可能な代数系である[1][注 1]除法の可能なであるという意味で可除環(かじょかん、division ring, Divisionsring)ともいう[3]係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体[4](たげんたい、division algebra, algèbre à division; 可除多元環)と呼称することも多い[注 2]。非可換な積を持つ体を非可換体(ひかかんたい、non-commutative field, corps non commutatif)という[2]

定義

斜体とは、以下の条件を満たす加法と乗法と呼ばれる 2 つの二項演算によって定まる代数的構造のことである。以下、台集合 K に加法 "+" と乗法 "×" が定められているとし、乗法の結果(積) a × bab と略記する。

  • K は加法に関してアーベル群である:
    • a, b, cK の任意の元とするとき、結合法則 a + (b + c) = (a + b) + c が成り立つ。
    • a + 0K = 0K + a = aK の元 a の取り方に依らずに満たされる零元と呼ばれる特別な元 0K が存在する。
    • aK の元ならばそれに対して a + (−a) = (−a) + a = 0K を満たす、マイナス元と呼ばれる元 −a が常に存在する。
    • 交換法則が成り立つ。つまり K のどんな元 a, b についても、 a + b = b + a となる。
  • K は乗法に関してモノイドであって、0 以外の元がをなす:
    • a, b, cK の任意の元とするとき、結合法則 a(bc) = (ab)c が成り立つ。
    • a1K = 1Ka = aK の零元 0K でない元 a の取り方に依らずに満たされる単位元と呼ばれる特別な元 1K が存在する。
    • a が零元 0K でない K の元ならばそれに対して aa−1 = a−1a = 1K を満たす、逆元と呼ばれる元 a−1 が常に存在する。
  • 乗法は加法に対して分配的である: a, b, cK の任意の元とするとき、a(b + c) = ab + ac, (a + b)c = ac + bc が成り立つ。

また、この条件を満たす代数的構造を備えた代数系 (K, +, 0K, ×, 1K) あるいは省略して単に集合 K は「斜体を成す」という。零元のみからなる集合 {0} は 1 = 0 と見れば上記の条件を満たし、自明な体と呼ばれるが往々理論的な障害となるため通常は除外して考える。つまり、体の定義に通常は

  • 1 ≠ 0, すなわち乗法は零元でない単位元を持つ。

なる条件を加える。さらにもう一つ、乗法の可換性に関する条件

  • K のどんな元 a, b についても、 ab = ba が満たされる。

を加えるとき K(可換)体と呼び、可換性が満たされない元を K が持つとき非可換体と呼ぶ。また一つの代数系 K に対してではなく、代数的構造の分類としてもこれらの用語を用いる。分類としての明確化のために、可換体・非可換体の両者をあわせて「必ずしも可換でない体」という用語を用いることがある。

上記の条件を非自明な単位的非可換環 K に対して

  • 可除性: x零元でないならば、その乗法逆元 x−1K が存在する。

を条件として課したものと見るとき、しばしば可除環とも呼ばれる。

斜体の概念は、いくつかの立場から捉えられ用いられるため、それぞれの属する文脈でとくに積の結合性を要求するか否かなどについて差異が認められる。たとえば非可換な体、あるいは可除な単位的(結合)環を相手にする文脈では結合的なものに限ることが多く、非結合的(分配的)多元環で可除なものとする立場からは非結合的(分配的)斜体が範疇に含まれうる。とくに非結合的斜体を認める立場からはアーサー・ケイリー八元数の全体が成す非結合的分配環も斜体として扱うことができるため、八元数体という呼称が用いられることがある。

性質・諸概念

逆元の存在から、斜体 D の零でない任意の左イデアルIl・右イデアルIr・両側イデアルID の単位元 1D を含まねばならず、それゆえIlIrID 全体に一致せねばならない。逆に、左イデアル(もしくは右イデアル)が零か全体にかぎるような単位的(結合)環は斜体となる。斜体は自明でない両側イデアルを持たぬゆえ単純であり、特に可換単純環は常に可換体を成すが、一般に単純環であって斜体とならぬものが存在する。(例:斜体上の行列環)

斜体 D の中心

この項目は、抽象代数学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:数学Portal:数学)。


「斜体 (数学)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「斜体_(数学)」の関連用語





5
30% |||||



8
16% |||||

9
10% |||||


斜体_(数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



斜体_(数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの斜体 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS