幾何化予想とペレルマン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/11 04:11 UTC 版)
「ポアンカレ予想」の記事における「幾何化予想とペレルマン」の解説
2002年から2003年にかけて、当時ステクロフ数学研究所に勤務していたロシア人数学者グリゴリー・ペレルマンはポアンカレ予想を証明したと主張し、2002年11月11日に論文をプレプリント投稿サイトとして有名なarXivにて公表した。そのなかで彼はリチャード・ストレイト・ハミルトンが創始したリッチフローの理論に「手術」と呼ぶ新たな手法を付け加えて拡張し、サーストンの幾何化予想を解決して、それに付随してポアンカレ予想を解決したと宣言した。サーストンの幾何化予想とは、任意の素な3次元多様体はいくつかの非圧縮トーラスにより、幾何構造をもつピース(閉領域)に分解されるというものである。さらに、幾何構造をもつ3次元多様体のモデルは8つあるというものである。また、サーストンの幾何化予想は、任意の素な3次元多様体は、いくつかのグラフ多様体と双曲多様体を非圧縮トーラスにより張り合わせて得られると言い換えることもできる。 ペレルマンは、特異点が発生する3次元多様体に対して、3次元手術つきリッチフロー (Ricci flow with surgery) を適用することによって幾何化予想を解決した。手術とは、有限時間で生成する特異点の直前でシリンダー状の部分の切り口 S2 に沿って球面状のキャップをかぶせてそこに標準解と呼ばれるものを貼ることである。ペレルマンは、この手術を特異点が生成する時空の点に限りなく近づける極限をとることにより、3次元リッチフローが有限時間での特異点を超えて標準的に延長することを証明した。 それ以来ペレルマン論文に対する検証が複数の数学者チームによって試みられた。原論文が理論的に難解でありかつ細部を省略していたため検証作業は難航したが、2006年5–7月にかけて3つの数学者チームによる報告論文が出揃った。 ブルース・クライナーとジョン・ロット, Notes on Perelman's Papers(2006年5月)ペレルマンによる幾何化予想についての証明の細部を解明・補足 朱熹平と曹懐東、A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow(2006年7月、改訂版2006年12月)ペレルマン論文で省略されている細部の解明・補足 ジョン・モーガンと田剛、Ricci Flow and the Poincaré Conjecture(2006年7月)ペレルマン論文をポアンカレ予想に関わる部分のみに絞って詳細に解明・補足 これらのチームはどれもペレルマン論文は基本的に正しく致命的誤りはなかったこと、また細部のギャップについてもペレルマンの手法によって修正可能であったという結論で一致した。これらのことから、現在では少なくともポアンカレ予想についてはペレルマンにより解決されたと考えられている。 ペレルマンは解法の説明を求められて多くの数学者達の前で壇上に立った。しかし、ほとんどの数学者がトポロジーを使ってポアンカレ予想を解こうとしており、聴講した数学者たちもほとんどがトポロジーの専門家であったため、微分幾何学を使ったペレルマンの解説を聞いた時、「まず、ポアンカレ予想を解かれたことに落胆し、それがトポロジーではなく(トポロジーの研究者にとっては古い数学と思われていた)微分幾何学を使って解かれたことに落胆し、そして、その解説がまったく理解できないことに落胆した」という。なお、ペレルマンの証明には熱量・エントロピーなどの物理的な用語が登場する。 2006年8月22日、スペインのマドリードで催された国際数学者会議の開会式においてペレルマンに対しフィールズ賞が授与された。しかしペレルマンはこれに出席せず、受賞を辞退した。 2006年12月22日、アメリカの科学誌「サイエンス」で科学的成果の年間トップ10が発表され、その第1位に「ポアンカレ予想の解決」が選ばれた。
※この「幾何化予想とペレルマン」の解説は、「ポアンカレ予想」の解説の一部です。
「幾何化予想とペレルマン」を含む「ポアンカレ予想」の記事については、「ポアンカレ予想」の概要を参照ください。
- 幾何化予想とペレルマンのページへのリンク