大型光学天体望遠鏡
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/26 09:00 UTC 版)
大型の研究用望遠鏡はほとんどの場合、カセグレン式望遠鏡としてもニュートン式望遠鏡としても使用できる。長い焦点距離で狭い視野を高倍率で観測したい場合には前者を、より明るい視野を使いたい場合には後者を用いる。これらの大型望遠鏡には穴の開いた主鏡とニュートン焦点、そして様々な位置に脱着可能な副鏡とそれを支えるスパイダーなどが設けられている。 1987年には集合鏡望遠鏡(MMT)が建設され、望遠鏡開発の新しい時代を迎えた。この望遠鏡は口径1.8mの鏡6枚からなり、これらの鏡を合成して口径4.5m相当の集光力を得る仕組みになっている。この方式はケック望遠鏡に受け継がれている。ケック望遠鏡は口径1.8mの鏡を36枚組み合わせた合成口径10mの望遠鏡である。 現在地上に建設されている世代の望遠鏡は、口径6-8mの主鏡を持っている。この世代の望遠鏡では反射鏡はたいてい非常に薄く、多数並んだアクチュエータによって最適な形状に保たれる仕組みを備えている(能動光学を参照のこと)。この技術は口径30m、50m、100mといった未来の望遠鏡計画の設計を推進する原動力となっている。 望遠鏡で使われる検出器は、初めは人間の目であった。後に、写真乾板がその地位に就き、分光計が導入されてスペクトルの情報を得ることを可能にした。現在では写真乾板に続いて電荷結合素子 (CCD) のような電子検出器の世代が後を受け継ぎ、感度と解像度の両面で完全な性能に達しつつある。 現在の研究用望遠鏡には以下のようないくつかの装置が付いている。 さまざまな波長に対応した撮像用カメラ さまざまな波長域のスペクトルを得るための分光計 光の偏光を検出する偏光計 その他 近年、地上の望遠鏡において地球大気の悪影響を克服するためのいくつかの技術が開発され、良い成果を挙げている。これについては補償光学を参照のこと。 回折という光学現象があるために、望遠鏡が到達できる解像度や画質には制限がある。一般に点光源は回折によって有限の面積を持つ円盤状に広がって見え、これをエアリーディスクと呼ぶ。エアリーディスクの有効面積で解像度は決まり、これによって、近接する2つのディスクの角距離がどれだけあれば両者を分離できるかが決まる。この絶対的な限界値をスパローの限界と呼ぶ。この限界値は観測する光の波長と望遠鏡の鏡の直径に依存する。(赤い光は青い光よりも早くこの限界に達する。)これは、ある直径の鏡を持つ望遠鏡はある波長ではある一定の限界値までしか像を分解できないことを意味する。従って、その波長でより高い分解能を得ようとすれば、より大きな鏡を作るしかない。
※この「大型光学天体望遠鏡」の解説は、「天体望遠鏡」の解説の一部です。
「大型光学天体望遠鏡」を含む「天体望遠鏡」の記事については、「天体望遠鏡」の概要を参照ください。
- 大型光学天体望遠鏡のページへのリンク