ヒルベルトによる公示としての性格
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 16:25 UTC 版)
「ヒルベルトの23の問題」の記事における「ヒルベルトによる公示としての性格」の解説
問題リストおよびその議論の方法が影響力を与えるつもりで作られたのは明らかである。 ヒルベルトは帝国建設、計画的な熱意、はっきりとした方向付けと、学派の基礎をはっきりとさせることについてのドイツ学会の期待を感じずにはいられなかった。今では誰も「ヒルベルト学派」という語をそのような意味で用いることはないし、ヒルベルトの問題もフェリックス・クラインのエルランゲン・プログラムのような受け取られかたをされることはなかった。クラインはヒルベルトの同僚だったが、ヒルベルトのリストと比べると全く規定的ではなかった。マイケル・アティヤはエルランゲン・プログラムを時期尚早のものと評した。対照的に、ヒルベルトの問題は専門家の時宜のはかりかたというものを示している。 現在「ヒルベルト学派」がなにがしかを意味するとすれば、それは恐らく作用素の理論と、数理物理におけるヒルベルト=クーランによる一連の著作を正典とするような流儀のことになるだろう。上で述べたように、ヒルベルトはリストの中でスペクトル理論についての問題を直接には提起していない。そうすることはクライン流のやり方になっただろうとも言えるだろう。さらに、彼自身の代数学への主要な貢献であり、不変式論を研究していた頃からの関心の的であった可換環論(そのころはイデアル理論とよばれていた)にそれほどの重要性を与えなかったし、少なくとも表面上は、レオポルト・クロネッカーに立ち向かっていたゲオルク・カントールを助けるような教えを広めることもなかった(コンスタンス・リード(英語版)の伝記に伝えられるように、ヒルベルトはクロネッカーから多くを学んだが、彼の姿勢を嫌悪していた)。リストの先頭に集合論があげられていることからは多くを読み取ることができただろう。 古典的解析の一分野であり、純粋数学者なら誰でも知っているだろう複素関数論はかなり無視されている。リーマン予想以外に、ビーベルバッハ予想などのよい問が欠けている。ヒルベルトの戦略的な目標のうちには可換環論を複素関数論と同じ序列に上げることがあったが、これには50年かかることになった(そして、いまだに地位が入れ替わるまでには至っていない)。 ヒルベルトには幾人かの相談相手がいた。アドルフ・フルヴィッツとヘルマン・ミンコフスキーはどちらも親しい友達で、彼に匹敵する知性の持ち主だった。彼は数の幾何学(問題18)と二次形式(問題11)についてのミンコフスキーの研究に賛意を送っている。フルヴィッツはリーマン面の理論を大きく前進させた。ヒルベルトは、発展の途上にあった類体論に関する自身の研究において、代数的整数論の幾何学的指針として関数体との類比を援用したが、これは問題9に反映されており、ある程度は問題12、問題21および問題22にもそれがみられる。1900年におけるほかのライバルといえばアンリ・ポアンカレぐらいだったが、問題16の後半は力学系に関するポアンカレ流の問である。1902年にはポアンカレ予想についても語った。
※この「ヒルベルトによる公示としての性格」の解説は、「ヒルベルトの23の問題」の解説の一部です。
「ヒルベルトによる公示としての性格」を含む「ヒルベルトの23の問題」の記事については、「ヒルベルトの23の問題」の概要を参照ください。
- ヒルベルトによる公示としての性格のページへのリンク