スペースシャトル固体燃料補助ロケット スペースシャトル固体燃料補助ロケットの概要

Weblio 辞書 > 辞書・百科事典 > 百科事典 > スペースシャトル固体燃料補助ロケットの解説 > スペースシャトル固体燃料補助ロケットの概要 

スペースシャトル固体燃料補助ロケット

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/06 07:25 UTC 版)

スペースシャトル固体燃料補助ロケット。クローラー・トランスポーター上にある状態。
切り離し後のSRB(写真下)とオービタ(写真上)
SRB解剖図

概要

2機のSRBは、スペースシャトル本体を発射台から高度約150,000フィート (46km) まで打ち上げる際の、ほとんどの推力を生みだす。 1機あたりの推力は海面レベルで1,268.4トン (12.5MN) で、上昇するとともに増加し、最高で1,404.3トン (13.8MN) に達する。

発射台に設置されている間は、軌道船および外部燃料タンクを含む機体すべての重量を、移動式発射台の支持構造の上で支えている。 点火されるのは3機のメイン・エンジン (SSME) の推力が規定の水準に達したことが確認された後で、その後上空で切り離され、切り離し後も上昇を続け、切り離し75秒後に最高高度67kmに達し、そして落下に転じ、発射地点から226km離れた大西洋上にパラシュートで着水し、回収される。そしてSRBの外殻は、何度も再使用される。[注 2]

本体および固体燃料の開発・製造は、ユタ州ブリガム・シティ英語版サイオコール社が担当した。

SRBの基本構造図
詳細。固形燃料の断面や、外殻の接合やシーリングの詳細まで分かる図。
サイズ、重量

直径は3.71mで、全長は45.46mである。直径が3.71mに決まった経緯は鉄道での輸送時における車両限界に起因する[2]。SRBは固体燃料ロケットとしては史上最大のもので、またこれだけの大きさのロケットが再使用することを前提に開発されたのもこれが初めてであった。

1機の重量は590トン(うち燃料は500トン)で、2機を合計すると発射時の機体全重量の約60%を占める。

基本構造

機体の基本構造は、エンジン部(外殻、燃料、点火装置およびノズルを含む)、支持構造、分離システム、操縦装置、回収用電波発信機、火工品、減速装置、推力偏向装置、周辺地域安全確保のための自爆装置などである。

機体の外殻は、それぞれ別個に製作された七つの(主に状の)鋼鉄製の部分によって構成されている。各部分は工場内で接続され、最終的な組立のために列車でケネディ宇宙センターに搬送される。接続部分はそれぞれ、円周型のリングをU字ピンで締めつけて固定し、(機体の直径の大きさの、つまり直径3.7メートルほどの大きなラバー製の)Oリング3つ(1986年チャレンジャー号爆発事故が発生するまではOリングは2つしかなく、ここに設計上の弱点があり、氷点下の低温で劣化し壊れた、とされ、事故後3つに増やされ、低温の制限も厳密にされた)を用いて密閉され、耐熱パテが埋め込まれる。

スペースシャトルの他の部分や発射台との接続・接合

SRBは、後方部のフレーム上にある二本のちょうつがいとその対角線上にある接合部、および前方スカートの先端部分にある接合部によって外部燃料タンクに接続されている。発射台上にある時は、各ブースターは4本の爆発ボルトで移動式発射台に固定されており、発射する瞬間に切り離される。

構成

外殻と推進剤

外殻の中に推進剤を詰めた状態。
SRB外殻の接続部の断面図。スペースシャトルの設計上の弱点のひとつともされた部分。チャレンジャー空中分解事故の前のもので、Oリングが2つの時点のもの。

SRBの推進剤は、酸化剤過塩素酸アンモニウム(全重量の69.6%、以下同)、燃料アルミニウム (16%)、触媒の酸化鉄 (0.4%)、結合材(つなぎ)の重合体(ポリブタジエン・アクリロニトリル - Polybutadiene acrylonitrile - や末端水酸基ポリブタジエン - Hydroxyl-terminated polybutadiene - などで、それ自体も燃料として機能する。12.04%)、硬化剤のエポキシ (1.96%) で構成されている。一般にコンポジット推進薬と呼ばれるもので、APCP(アンモニウム過塩素酸合成燃料、Ammonium Perchlorate Composite Propellant)とも略称される。海面レベルでの比推力は242秒で、真空状態では268秒である。

主燃料にアルミニウムが選ばれた理由は、約31.0MJ/kgという高いエネルギー密度があるにもかかわらず、燃焼圧力が急激に変化して爆発してしまうような危険性が低いからである。上部2つのセグメントは内部の空洞は11光芒の星形で、下部2つのセグメントは円錐型になって閉じている。これにより、点火直後の離陸時には最大推力を発揮させ、かつ、その後およそ100秒で推力は減少する。これは、最大動圧点 (Max Q) における最大動圧を過大にしないためである(オービタではこの目的のために、SSMEの出力調整も併用されている)。

配電

SRBの電力は、軌道船にある主電源装置からA、B、Cと区別された母線を通して送られてくる。このうちCはAおよびBの、BはCのバックアップとなっていて、これによりもしいずれかの一本の母線が切断するようなことがあっても、必ず他のどれかによってバックアップされるようになっている。

公称電圧は、28±4ボルトである。

油圧系統

SRBは、2機のそれぞれ独立した油圧系統 (Hydraulic Power Units, HPUs) を搭載している。HPUは補助動力装置、燃料供給部、油圧ポンプ、油槽(オイルタンク)、油圧シリンダーなどによって構成されている。補助動力装置はヒドラジンで起動され、油圧系統に圧力を供給するためのポンプを駆動する。HPUは機体後部のノズルとスカートの間に設置されていて、二つの系統はノズル偏向およびロック用のアクチュエータ上でのみ連結している。作動する時間は発射の28秒前から、SRBが外部燃料タンクから切り離されるまでの間だけである。

電子制御装置は、SRBを外部燃料タンクに接続する後部リング上に設置されている。

HPUの燃料系統は完全に密封されていて、燃料タンクには22ポンド(10.0kg)のヒドラジンが貯蔵されている。タンク内は400psi (2.8MPa) の窒素ガスで加圧されており、燃料はガス圧により補助動力装置に供給される(能動排出)。

補助動力装置はポンプでヒドラジンを加圧し、ガス発生器へと送り込む。ガス発生器内ではヒドラジンは触媒により分解されて高温のガスとなり、二段式のタービンに吹きつけられて熱エネルギーが機械的な回転力に変換される。使用後の温度と圧力が下がったガスは船外に排出する前にガス発生器に戻され、冷却に使用される。一方、タービンは燃料ポンプや潤滑ポンプ、HPUの油圧ポンプなどを駆動する。以上述べたように、燃料ポンプは燃料それ自体によって駆動されるため、自発的にスタートすることはできない。従ってポンプとは別のバイパスの燃料供給ラインを設け、補助動力装置の回転数が増して燃料ポンプの出口の圧力がバイパスラインの圧力を超えるまでは窒素ガスの圧力でガス発生器に燃料を供給し、圧力が超えた時点でバイパスラインが閉じるようになっている。

補助動力装置の回転数が100%に達すると主制御バルブが閉じ、その後は電子制御によって回転数がコントロールされるようになる。もし主制御バルブが故障して開状態で固定されてしまうようなことがあれば、複バルブが作動して補助動力装置の回転数を112%に保つ。

2系統のHPUは、油圧作動機上でのみ連結している。このうち1系統は主動力として作用し、もう一つは予備として使用される。もし主動力の油圧が2,050psi(14.1MPa)以下に下がったときは、バルブが作動して動力源は複系統のほうに切り替わり、その後はバルブへの指令系統は切断される。バルブが閉鎖されると補助動力装置の制御装置に指示が送られ、回転数が100%から112%に上昇する。100%の回転数では、油圧作動機に連結しているうちの1系統のHPUと補助動力装置しか稼働させることができないからである。

補助動力装置の100%の回転数とは72,000rpmで、110%では79,200rpm、112%では80,640rpmである。

また油圧ポンプの回転数は3,600rpmで、3,050±50psi(21.0±0.34MPa)の油圧を提供する。圧力が3,750psi(25.9MPa)に達したときは、システムに過剰な圧力がかからないように解放バルブが作動する。

HPUおよび補助動力装置は、20回の再使用が可能である。

推力偏向装置

SRBには2機の油圧式ジンバル制御装置が搭載されていて、エンジンのノズルの傾きを変えることによって飛行を制御する。

シャトルの飛行制御装置の一部である上昇推力ベクトル制御装置 (Ascent Thrust Vector Control, ATVC) は、軌道船の3機のメイン・エンジンとSRBの2機のノズルと直結していて、機体が離陸・上昇する間の姿勢や軌道をコントロールする。航法装置からの指令はATVCドライバーに伝達され、そこから指令の割合に応じた制御信号がメイン・エンジンやSRBの油圧作動機に送られる。飛行制御系統とATVCにはそれぞれ四つの独立したチャンネルがあり、6機のメイン・エンジンのドライバーと4機のSRBのドライバーをコントロールする。また各ドライバーは、それぞれ1機ずつのメイン・エンジンとSRBの油圧作動機を制御する。

SRBの油圧作動機は独立した4本のものから構成されていて、それぞれが二段式のバルブを持ち、ドライバーからの信号によって作動する。各バルブは作動機のパワー・スプール (power spool) を制御し、それによってシリンダーが動かされ、ノズルの向きを変えることによって推力の方向を制御する。

各作動機の4機のバルブは、パワー・スプールの位置を決定するために多数決を行ってから作動力を供給する。4機のバルブには、それぞれ上記の4つのチャンネルから別々に信号が送られてきて、それぞれを照らし合わせて誤った信号が誤作動を引き起こさないようにする。もし誤った信号があらかじめ設定された時間以上送られてきた場合は、センサーが作動して選択バルブが開かれ、不備な油圧を隔離して取り除き、残りのチャンネルとバルブに作動機のラム・スプール (ram spool) を制御する許可を与える。

各チャンネルには、誤った信号を送ってきているチャンネルを特定するための監視装置が設定されている。また隔離バルブが働いて、誤作動しているチャンネルをリセットできるようにもなっている。

各作動シリンダーには、送られてきた信号をATVCに反映させるための変換器が設けられている。また作動シリンダーは緩衝装置(クッション)にもなっていて、着水時の衝撃からノズルを保護する。

角速度検出ジャイロ装置

各SRBにはそれぞれ2機の角速度検出ジャイロ装置(レートジャイロ)が搭載されており、各装置はピッチ角用とヨー角用の2個のジャイロを持っている。レートジャイロは座標軸に対する角速度の変化を検出し、軌道船に搭載されているロール角用のジャイロと協力して、機体が上昇を開始してからSRBが分離されるまでの間、軌道船コンピューターの誘導・航法制御装置に信号を送り続ける。SRBが切り離されると、角速度の検出は軌道船に搭載されているレートジャイロが引き継ぐ。

SRBのレートジャイロが検出した信号は、軌道船後部の多重送信機/単送信機を通して軌道船の汎用コンピューター (general-purpose computers, GPC) に送信され、そこで不必要な情報が削除されてSRBのノズルにピッチ角とヨー角を決定する指令が送られる。レートジャイロは20回の再使用ができるように設計されている。

支持支柱

各SRBは、4本のボルトで移動式発射台の支持支柱に固定されている。ボルトの両端はナットで締められており、そのうち上端のものはNASA標準雷管 (NASA standard detonators, NSDs) と呼ばれる爆発ボルトを内包していて、ロケットの点火指令が発せられた瞬間に起爆して切断される。

NSDが起爆すると、ボルトは張力の解放(発射台に固定されている時に、すでに張力が加えられている)およびガス圧や重力によって落下し、砂箱で食い止められる。ボルトの全長は28インチ (710mm) で、直径は3.5インチ (89mm) である。飛び散ったナットは、爆風容器で受け止められる。また使用済みの砕けたナットは、ミッション終了後に記念品として飛行士や関係者に配られるのが慣例となっている。重さは1個が7kg以上もあり、ブックスタンドとして利用している飛行士もいる。

なお、もし爆発ボルトが起動しないような事態が発生しても、ロケットエンジンの推力でボルトを引きちぎり安全に発射できるように設計されている。

SRB点火の指令は、軌道船のコンピューターから主制御装置を通して移動式発射台上の支持支柱火工部制御装置に送られ、NASA標準雷管 (NSD) を起爆させる。火工部制御装置は発射の16秒前から電圧が正常であるかを監視されていて、もし低すぎる場合は発射が中止される。


注釈

  1. ^ 「固体燃料推進器 (solid rocket booster, SRB)」と「固体燃料ロケット (solid rocket motor)」はしばしば混同されるが、技術的にはそれぞれ独自の意味を持つ。「推進器」とは、回収用パラシュート・電子機器・分離用ロケット・安全用自爆装置・推力偏向装置などを含むロケット全体の装置を指すのに対し、「固体燃料ロケット」は燃料・外殻・点火装置・ノズルによって構成されるロケットそれ自体を表す。
  2. ^ 一例を挙げれば、シャトル初飛行のSTS-1で使用された本体下方部分は、その後30年間に6度飛行し、一回の燃焼試験を受け、2009年にはアレスI ロケットの試験飛行でも使用された。アレスI 自体も、シャトルの48回の飛行と5回の地上試験で使用された別々のSRBの部品を寄せ集めて作られたものであった。NASA Ares I First Stage Motor to be Tested August 27”. NASA (2009年8月17日). 2010年3月29日閲覧。

出典

  1. ^ Shuttle Solid Rocket Booster Facts”. NASA. 2010年4月2日閲覧。
  2. ^ A Horse’s Behind, and Railroad Tracks, オリジナルの2014年8月27日時点におけるアーカイブ。, https://web.archive.org/web/20140827145838/http://nonsensefactory.com/a-horses-behind-and-railroad-tracks/ 
  3. ^ a b Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program”. NASA. 2022年2月17日閲覧。
  4. ^ Salt Water Activated Release for the SRB Main Parachutes (SWAR)”. NASA (2002年4月7日). 2010年4月2日閲覧。
  5. ^ Report of the Presidential Commission on the Space Shuttle Challenger Accident, Chapter IV: The Cause of the Accident”. NASA. 2010年4月2日閲覧。
  6. ^ Space Shuttle Challenger Case”. 2010年4月2日閲覧。
  7. ^ Orbiter Manufacturing and Assembly”. NASA. 2010年4月2日閲覧。
  8. ^ "Jerry L. Ross" NASA Johnson Space Center Oral History Project, 26 January 2004.
  9. ^ Jenkins, Dennis R. "Space Shuttle: History of the National Space Transportation System – The First 100 Flights"
  10. ^ NASA and ATK Successfully Test Ares First Stage Motor”. NASA. 2010年3月29日閲覧。


「スペースシャトル固体燃料補助ロケット」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「スペースシャトル固体燃料補助ロケット」の関連用語

スペースシャトル固体燃料補助ロケットのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



スペースシャトル固体燃料補助ロケットのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのスペースシャトル固体燃料補助ロケット (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS