ベルヌーイの定理
連続体力学 | ||||||||
---|---|---|---|---|---|---|---|---|
![]()
| ||||||||
| ||||||||

ベルヌーイの定理(ベルヌーイのていり、英語: Bernoulli's principle)またはベルヌーイの法則とは、完全流体のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。
概要
ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。
ダニエル・ベルヌーイ(Daniel Bernoulli、1700年 - 1782年)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた[1]。ベルヌーイの定理が成り立つ条件として、同一流線上の二点で成り立ち、一方の点と他方の点でエネルギーの総量に変化がないことである。[要出典]また、ベルヌーイの定理は粘性のない流体である完全流体のとき成り立つ。ベルヌーイの定理は、運動エネルギーと圧力の二つの力の和が一定であるので、速度が高くなると圧力が下がり、逆に速度が低くなれば圧力が上がる。「流体の流れが速い場所では圧力が低い」と言うことがベルヌーイの定理ではない。[2]身近なベルヌーイの定理の使用例として、鳥や飛行機、ビル風の一部、霧吹きと内燃機関のキャブレター、自動車部品のウイングやディフューザー、野球ボールやゴルフボールが曲がる現象、速い列車が側を通過するときに吸い寄せられる現象などがある。
分類
ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。
外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、
である。
(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。
最も典型的な例である
- Bernoulli's principleのページへのリンク