電磁気学や光学との齟齬
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/13 06:49 UTC 版)
「特殊相対性理論」の記事における「電磁気学や光学との齟齬」の解説
一方、19世紀後半になると、当時知られていた電磁気学に関する基礎方程式がジェームズ・クラーク・マクスウェルにより、マクスウェル方程式として整備された。 そしてマクスウェル方程式を解くことにより、電磁波の速度を計算したところ、これが光速度 c と一致したため、光の正体は電磁波であると考えられるようになった(そしてそれは正しかった)。 光学の学問分野でも光の回折を説明するため、光を波だとみなす波動説が広まり、光を伝えるための媒質であるエーテルで宇宙が満たされているという仮説がホイヘンスにより提案された(これは後に特殊相対性理論により否定される)。 こうした知見から、マクスウェル方程式はエーテルに対して静止している理想的な座標系において電磁気学を記述する方程式とみなされたが、エーテルに対して運動する基準系から見た電磁気現象についての理解は未だ不充分であった。 今日の目から見ると、これは電磁気学とニュートン力学の間に明確な齟齬があった事に起因する。 まず、マクスウェル方程式はガリレイ変換の下で不変ではない。すなわち、ある慣性系でマクスウェル方程式が成り立つものとすると、そこからガリレイ変換で移った別の基準系ではマクスウェル方程式は成り立たず、別の変形された方程式が成り立つことになるのである。実際、ヘルツはこの変形された方程式を運動座標系における電磁場の振る舞いを表す方程式として提案したが、Wilson や Röntgen–Eichenwald の実験によって否定された。 またエーテルの存在を仮定することは、エーテルに対して静止している「絶対静止系」が存在する事を意味するが、前述のようにニュートン力学におけるガリレイの相対性原理は「絶対静止系」のようなものを認めておらず、明確な齟齬をきたしていた。 両者の齟齬が特に先鋭化したのは、光の速度に関する解釈である。ガリレイの相対性原理を前提とした場合、光の速度は慣性系に依存するはずであるので、光の速度を異なる慣性系で計測すれば、マクスウェル方程式が成立するただ一つの「静止基準系」を見つけることができるはずである。この発想からマイケルソン・モーリーの実験が行われたが、後述のようにどれもが「静止基準系」であるかのような結果が得られてしまった。 以上のように、特殊相対性理論以前の物理学はガリレイの相対性原理を認める立場と絶対静止系を認める立場が混然としていたが、両者には上述したような矛盾があるので、どちらかを修正もしくは放棄する必要がある。特殊相対性理論以前の理論であるエーテル仮説は、「エーテルに対する静止系」という絶対静止系を採用する代わりにガリレイの相対性原理を放棄する立場に立っていたのである。
※この「電磁気学や光学との齟齬」の解説は、「特殊相対性理論」の解説の一部です。
「電磁気学や光学との齟齬」を含む「特殊相対性理論」の記事については、「特殊相対性理論」の概要を参照ください。
- 電磁気学や光学との齟齬のページへのリンク