ベイナイトの生成に及ぼす合金元素の影響
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/13 15:55 UTC 版)
「ベイナイト」の記事における「ベイナイトの生成に及ぼす合金元素の影響」の解説
変態機構の変化に及ぼす合金元素の働きが必ずしも比例的でないため、ベイナイトの生成に及ぼす合金元素の影響は複雑である。さらに悪いことに、それらの合金元素の影響は相互作用により阻害される。鉄との間に置換型固溶体を形成する合金元素は、ベイナイト変態温度域では置換型合金元素の拡散が起こらないために、ベイナイト変態に対して専ら間接的な影響しか与えない。そのため、合金元素は炭素の拡散速度を変えることによってベイナイトの成長の動力学に影響を与える。定性的には、マンガンやニッケル、クロム、珪素といった元素の減少はベイナイト変態開始温度を高め、変態時間を長くする。一方、クロムやモリブデン、バナジウム、タングステンといった元素は恒温変態曲線図(TTT図)中のパーライト域とベイナイト域を分離させて変態停留域を生じさせる。 炭素はベイナイトの形態に関して、本質的な影響因子である。炭素量の増加とともに、炭素の拡散が妨げられるためにベイニティックフェライトの幅方向の成長が停まり、ベイニティックフェライトは細かく数も多くなる。その上に炭素量の増加は、(下部ベイナイトの場合)フェライトから、(上部ベイナイトの場合)オーステナイトからの炭化物の生成を促す。炭素量の増加は潜伏期間を伸ばしベイナイト変態開始温度(Bs点)の低下を引き起こす。 クロムの添加は、炭素の添加と同様に潜伏期間を伸ばし、Bs点を低下させる。このオーステナイトの安定性の強化は、(TTT図の)温度域の上に変態の起こらない長い時間をもたらし、変態停留域を生じさせる。 珪素はFe-Fe3C系の準安定系状態図におけるAC1とAC3温度を上昇させるとともに、炭素の共析濃度を低い側に移動させる。パーライトとベイナイトの生成における動力学に対しては珪素はほとんど影響を与えない。また、珪素はセメンタイトに固溶しない。 マンガンはパーライト並びにベイナイト変態域におけるオーステナイトの安定性を大きく向上させるため、 マンガン鋼は大きな残留オーステナイト量をもたらしうるとともに、ベイナイト域の変態時間を長くする。 このベイナイト変態(で生じた残留オーステナイトによる機械的性質の低下)は、調質(焼戻し)によって改善される。マンガンはセメンタイト中に固溶でき、そして炭素との間にセメンタイトと同様の構造を持つMn3C炭化物を形成する。 ニッケルの添加はクロム或いはマンガンと同様にBs点を下げる効果を持つ。しかし、高いニッケル量は鋼が完全にベイナイト変態するのを拘束する。例えば、4%のニッケルの添加はマルテンサイト変態開始温度を約10℃上昇させて、ベイナイト変態域を狭めることとなる。 モリブデンはAC1に影響を及ぼすことなくAC3温度を上昇させ、初析フェライト析出とパーライトの生成を遅くする。これより、モリブデンを多く添加することで、ベイナイト変態域より高い温度の冷却中にフェライト若しくはパーライトを生成することがなくなる。 フェライト及びパーライトの生成は硼素により強く遅らされる。(TTT図上の)パーライト域は長時間側に移動するのに対して、ベイナイト域は影響を受けない。そのため、連続冷却変態でも完全なベイナイト単一のミクロ組織を得ることができるようになる。その際に重要なのは、硼窒化物が生じると脆化の原因となるので、窒素をアルミニウムやチタンで固定することである。
※この「ベイナイトの生成に及ぼす合金元素の影響」の解説は、「ベイナイト」の解説の一部です。
「ベイナイトの生成に及ぼす合金元素の影響」を含む「ベイナイト」の記事については、「ベイナイト」の概要を参照ください。
- ベイナイトの生成に及ぼす合金元素の影響のページへのリンク