いくつかの事実について
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/10/14 01:23 UTC 版)
集積点の特徴づけとして 「x が S の集積点となる必要十分条件は、x が S ∖ {x} の閉包に含まれることである」 を挙げることができる。実際、ある点 y がある集合 T の閉包に属することと y の任意の近傍が T と交わりを持つことが同値であるから、x の任意の近傍が x と異なる S の元を含む(⇔ x の任意の近傍が S ∖ {x} と交わる)という条件は、すなわち x が S ∖ {x} の閉包に属すると言う条件に他ならない。L(S) を S の集積点全体の成す集合とすると、S の閉包について 「S の閉包 cl(S) は S と L(S) との和集合に等しい」 という特徴づけが得られる。実際(cl(S) ⊂ S ∪ L(S) について)、x が S の閉包に属するとすると、x が S に属する場合は何もすることは無いが、そうでない場合は x の任意の近傍が S の点を含み、それは x と異なる(すなわち、x は S の集積点で L(S) に属す)。逆に(cl(S) ⊃ S ∪ L(S) について)、S は明らかに S の閉包に属し、L(S) の元 x についてはx の任意の近傍が(x と異なる)S の点を含むから、やはり x は S の閉包に属する。また、この結果の系として、閉集合の特徴づけ 「S が閉集合であるための必要十分条件は、S がその集積点を全て含むことである」 が得られる。実際、S が閉 ⇔ S = cl(S) ⇔ S = S ∪ L(S) となるが、これは L(S) は S に含まれるという条件に他ならない。あるいは次のようにしても分かる。S が閉で x が S の集積点であるとき、もし x が S に属さないとすると S の開近傍で S の補集合に包まれるものがあることになるが、それは S の点を含まないので x が S の集積点であったことに反する。逆に S が全ての集積点を含むとすると、S の補集合が開であることを示せる。実際、x を S の補集合の元とすると仮定により x は集積点でないから、x の開近傍 U で S と交わらないものが取れて、U は S の補集合に包まれる。これは S の補集合の各点で成り立つから、S の補集合は各点の開近傍の和として書けることになり、S の補集合は開となる。 孤立点はいかなる集合の集積点にもならない。実際、x が孤立点ならば {x} は x の近傍となるが、これは x 以外の点を含まない。空間 X が離散的ならば任意の点が孤立点ゆえ、集積点を持つような X の部分集合は存在しない。X が離散的でないとき、単元集合 {x} が開でないような点 x が存在するから、x の任意の開近傍は x と異なる点を含み、x は X の集積点となる。したがって、位相空間 X が離散であるための必要十分条件は、X が集積点を持つ部分集合を持たないことである。 空間 X が密着位相を持ち、S が X の二元以上を含む部分集合とすると X の全ての元が S の集積点である。また S が単元集合の場合も、X ∖ S の各点は S の集積点である。実際、S ∖ {x} が空でない限りその閉包は自動的に X しかありえない。一方、S ∖ {x} が空となるのは S が空であるか x が S の唯一の元であるときに限る。 定義により、任意の集積点は触点である。
※この「いくつかの事実について」の解説は、「集積点」の解説の一部です。
「いくつかの事実について」を含む「集積点」の記事については、「集積点」の概要を参照ください。
いくつかの事実について
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 08:02 UTC 版)
「次元 (ベクトル空間)」の記事における「いくつかの事実について」の解説
ベクトル空間 V の部分線型空間 W に対して dim(W) ≤ dim(V) が成り立つ。 二つの有限次元ベクトル空間が等しいことを示すのに、次の判定規準が利用できる。 V が有限次元ベクトル空間で W が V の部分線型空間とするとき、dim(W) = dim(V) ならば W = V が成り立つ。 Rn は標準的な基底 {e1, ..., en} を持つ。ただし ei は単位行列の第 i-列に対応する。従って Rn の次元は n である。 体 F 上の任意の二つのベクトル空間は、その次元が等しいならば互いに同型である。それらの基底の間の任意の全単射はベクトル空間の間の全単射な線型写像に一意的に拡張することができる。集合 B が与えられたとき、F 上の次元が(B の濃度) |B| であるようなベクトル空間を、次のように作ることができる。写像 f: B → F で、有限個の例外を除く B の各元 b に対して f(b) = 0 となるようなものの全体 F(B) を取り、元ごとの和とスカラー倍によってこれらの写像の間の加法と F の元によるスカラー乗法を定めれば、それが初期の F-ベクトル空間である。 次元についての重要な結果として、線型写像に対する階数・退化次数定理が挙げられる。 F/K を体の拡大とすると、拡大体 F は特に部分体 K 上のベクトル空間の構造を持つ。さらに、任意の F-ベクトル空間 V は K-ベクトル空間と見ることもできる。これらのベクトル空間の次元は dimK(V) = dimK(F) dimF(V). なる関係によって結ばれている。特に任意の n-次元複素ベクトル空間は実ベクトル空間として次元 2n を持つ。 ベクトル空間の次元について、基底の濃度および空間自身の濃度に関するいくつか簡単な公式が知られている。V を体 F 上のベクトル空間とし、その次元を dim V で表すと dim V が有限ならば |V| = |F|dimV, dim V が無限ならば |V| = max(|F|, dim V), などが成立する。
※この「いくつかの事実について」の解説は、「次元 (ベクトル空間)」の解説の一部です。
「いくつかの事実について」を含む「次元 (ベクトル空間)」の記事については、「次元 (ベクトル空間)」の概要を参照ください。
- いくつかの事実についてのページへのリンク