分子 分子の概要

分子

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/13 10:50 UTC 版)

分子
組成 原子
相互作用 弱い相互作用
強い相互作用
電磁相互作用
重力相互作用
理論化 アメデオ・アヴォガドロ(1811年)
電荷 0
テンプレートを表示
5つの6炭素環を含むPTCDA分子が見える原子間力顕微鏡(AFM)画像[1]
5つの炭素環が直鎖状に連なったペンタセン分子の走査型トンネル顕微鏡(STM)画像[2]
1,5,9-トリオキソ-13-アザトリアンギュレンのAFM画像とその化学構造[3]

概要

分子には、酸素分子(酸素原子2つ、O2)のように1つの化学元素の原子からなる等核分子と、(水素原子2つと酸素原子1つ、H2O)のように2つ以上の元素からなる異核分子がある。気体分子運動論では、あらゆる気体粒子はその組成にかかわらず分子と呼ばれることが多い。これは、希ガスが単原子で安定な化学種であるため(単原子分子とも呼ばれる)、分子が2つ以上の原子を含むという要件を緩和したことによる[10]水素結合イオン結合など非共有結合英語版で結合された原子や複合体は、通常、単一分子とはみなされない[11]

分子のような概念は古くから議論されてきたが、分子とその結合の本質に関する近代的な研究は17世紀に始まった。ロバート・ボイルアメデオ・アヴォガドロジャン・ペランライナス・ポーリングといった科学者たちによって、時間をかけて洗練された分子の研究は、今日では分子物理学または分子化学として知られている。

語源

メリアム=ウェブスターオンライン・エティモロジー・ディクショナリーによると、「分子(molecule)」という言葉は、ラテン語の「moles」すなわち「質量の小さな単位」に由来する。語源はフランス語の molécule(1678)で、ラテン語の moles 「mass, barrier(質量、境界)」の指小辞である新ラテン語molecula に由来する。18世紀後半までラテン語の形でしか使われなかったこの言葉は、デカルトの哲学書で使われたことで人気を博した[12][13]

歴史

分子の構造に関する知識が増えるにつれて、分子の定義も進化してきた。初期の定義では、分子を「その組成と化学的性質を保持する純粋な化学物質の最小の粒子」と定義していたが、あまり正確ではなかった[14]。しかし、岩石塩類金属など身近な物質の多くは、化学的に結合した原子やイオンの大きな結晶ネットワークで構成されており、個別の分子でできている訳ではないため、この定義はしばしば破綻する。

現代の分子の概念は、レウキッポスデモクリトスなど、すべての宇宙は原子と空隙で構成されていると主張した科学以前のギリシャの哲学者までさかのぼることができる。紀元前450年頃、エンペドクレスは、基本元素)、)、空気)、))と、それらの元素が相互作用する引力と斥力という「力」を想像した。

第5番目の元素である「不壊(ふえ)の真髄」であるエーテルは、天体の基本的な構成要素と考えられていた。レウキッポスやエンペドクレスの視点は、エーテルとともにアリストテレスに受け入れられ、中世およびルネサンス期のヨーロッパに受け継がれた。

しかし、より具体的には、「分子」、すなわち原子が結合した集合体や単位という概念は、ロバート・ボイルが1661年に出版した有名な著書『懐疑的化学者The Sceptical Chymist)』の中で、「物質は微粒子の集団から構成されており、化学変化はその集団の再編成によって生じる」とした彼の仮説に端を発している。ボイルは、物質の基本要素は「微粒子(corpuscles)」と呼ばれる種類や大きさの異なる粒子で構成されており、これらの粒子は自身を集団に編成することができると主張した。1789年に、ウィリアム・ヒギンズ英語版が、原子価結合の概念を予示となる「究極の」粒子の組み合わせと呼ぶものについての見解を発表した。ヒギンズによれば、たとえば酸素の究極粒子と窒素の究極粒子の間の力は6であり、力の強さはそれに応じて分割され、他の究極粒子の組み合わせについても同様である。

ドルトンの原子説 (J.Dalton,A New System of Chemical Philosophy,1808)。
1.水素、4.酸素、21.水
ドルトンは水素と酸素が1対1で反応し水が生成すると考えている。

ジョン・ドルトンが1803年に原子論を、1804年に倍数比例の法則により原子の存在を提唱した。しかし現代の電子原子核から構成される粒子のような構造的な概念ではなく、化学反応が一定の単位質量を基に進行するという量的概念であった[15]

「分子(molecule)」という言葉はアメデオ・アヴォガドロが作り出した[16]。1811年の論文「物体の素分子の相対質量の決定に関するエッセイ」(Essay on Determining the Relative Masses of the Elementary Molecules of Bodies)で、彼は本質的に次のように述べている。すなわち、パーティントン英語版の『化学の歴史(A Short History of Chemistry)』によると[17]

気体の最小粒子は必ずしも単純な原子ではなく、これらの原子が特定の数だけ引力で結合して一個の分子molecule)を形成している。

こうした考え方と同調して、1833年にフランスの化学者マルク・アントワーヌ・オーギュスト・ゴーダン英語版は、アボガドロの原子量に関する仮説を[18]、直線状の水分子のような半正確な分子形状と、H2Oのような正確な分子式の両方を明確に示す体積図(volume diagrams)を使って明確に説明した。

マルク・アントワーヌ・オーギュスト・ゴーダンによる気相における分子の体積図 (1833)

1917年、ライナス・ポーリングという無名のアメリカの化学技術者が、原子間結合を記述する方法として当時主流であったドルトンのフックアンドアイ結合[訳語疑問点]を研究していた。しかし、ポーリングはこの方法に満足せず、新たな分野である量子物理学に新しい方法を求めた。1926年、フランスの物理学者ジャン・ペランが、分子の存在を決定的に証明したことによりノーベル物理学賞を受賞した。彼は、いずれも液相系に関する3種類の方法で計算することによりアボガドロ定数を決定した。1番目はガンボージ石鹸のようなエマルションを使用し、2番目はブラウン運動を実験的に研究し、3番目はアインシュタインの液相における粒子回転の理論を検証した[19]

1927年、物理学者フリッツ・ロンドンヴァルター・ハイトラーは、新しい量子力学を、水素分子における可飽和性で非動的な引力と斥力、すなわち交換力の取り扱いに適用した。この問題を原子価結合の観点から扱った彼らの共同論文は、化学を量子力学の下に置くという点で画期的であった[20]。彼らの研究は、博士号を取得したばかりのポーリングに影響を与え、グッゲンハイム・フェローシップでチューリッヒのハイトラーやロンドンを訪問した。

水素の s 軌道と重なる sp³ 混成軌道の模式図

その後、1931年にポーリングは、ハイトラーとロンドンの研究、およびルイスの有名な論文に見られる理論に基づいて、量子力学を用いて分子の性質や結合角・結合に伴う回転といった構造式を計算する画期的な論文「化学結合の本性(The Nature of the Chemical Bond)」を発表した[21]。これらの概念に基づいて、ポーリングは、4つの sp³ 混成軌道が水素1s 軌道に重なって4つの σ結合を形成する CH4 のような分子の結合を説明する混成理論を開発した。この4つの結合は同じ長さと強さであるため、下図に示すような分子構造になる。

分子科学

分子科学(molecular science)は、化学と物理のどちらに重点を置くかによって、「分子化学(molecular chemistry)」または「分子物理学molecular physics)」と呼ばれる。分子化学は、化学結合の形成や切断といった分子間の相互作用を支配する法則を扱い、分子物理学は、分子の構造や特性を支配する法則を扱う。しかし、実際にはこの区別は曖昧である。分子科学では、分子は2つ以上の原子が結合した安定した系(束縛状態)で構成されている。多原子イオンも電気を帯びた分子と見なすことができる。不安定分子(unstable molecule)という用語は、非常に反応性英語版の高い種、すなわちラジカル分子イオンリュードベリ分子英語版遷移状態ファンデルワールス錯体ボース=アインシュタイン凝縮のような原子の衝突系など、電子原子核の一時的な集合体(共鳴)に対して使用される。


  1. ^ Iwata, Kota; Yamazaki, Shiro; Mutombo, Pingo; Hapala, Prokop; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki (2015). “Chemical structure imaging of a single molecule by atomic force microscopy at room temperature”. Nature Communications 6: 7766. Bibcode2015NatCo...6.7766I. doi:10.1038/ncomms8766. PMC 4518281. PMID 26178193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518281/. 
  2. ^ Dinca, L.E.; De Marchi, F.; MacLeod, J.M.; Lipton-Duffin, J.; Gatti, R.; Ma, D.; Perepichka, D.F.; Rosei, F. (2015). “Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene”. Nanoscale 7 (7): 3263–9. Bibcode2015Nanos...7.3263D. doi:10.1039/C4NR07057G. PMID 25619890. 
  3. ^ Hapala, Prokop; Švec, Martin; Stetsovych, Oleksandr; Van Der Heijden, Nadine J.; Ondráček, Martin; Van Der Lit, Joost; Mutombo, Pingo; Swart, Ingmar et al. (2016). “Mapping the electrostatic force field of single molecules from high-resolution scanning probe images”. Nature Communications 7: 11560. Bibcode2016NatCo...711560H. doi:10.1038/ncomms11560. PMC 4894979. PMID 27230940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894979/. 
  4. ^ a b IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.M04002.
  5. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). オンライン版:  (2006-) "Molecule".
  6. ^ Ebbin, Darrell D. (1990). General Chemistry (3rd ed.). Boston: Houghton Mifflin Co.. ISBN 978-0-395-43302-7 
  7. ^ Brown, T.L.; Kenneth C. Kemp; Theodore L. Brown; Harold Eugene LeMay; Bruce Edward Bursten (2003). Chemistry – the Central Science (9th ed.). New Jersey: Prentice Hall. ISBN 978-0-13-066997-1. https://archive.org/details/studentlectureno00theo 
  8. ^ Chang, Raymond (1998). Chemistry (6th ed.). New York: McGraw Hill. ISBN 978-0-07-115221-1. https://archive.org/details/chemistry00chan_0 
  9. ^ Zumdahl, Steven S. (1997). Chemistry (4th ed.). Boston: Houghton Mifflin. ISBN 978-0-669-41794-4 
  10. ^ Chandra, Sulekh (2005). Comprehensive Inorganic Chemistry. New Age Publishers. ISBN 978-81-224-1512-4 
  11. ^ "Molecule". Encyclopædia Britannica. 22 January 2016. 2020年5月3日時点のオリジナルよりアーカイブ。2016年2月23日閲覧
  12. ^ Harper, Douglas. "molecule". Online Etymology Dictionary. 2016年2月22日閲覧
  13. ^ "molecule". Merriam-Webster. 2021年2月24日時点のオリジナルよりアーカイブ。2016年2月22日閲覧
  14. ^ Molecule Definition Archived 13 October 2014 at the Wayback Machine. (Frostburg State University)
  15. ^ 「現代化学史 原子・分子の化学の発展」p45 廣田襄 京都大学学術出版会 2013年10月5日初版第1刷
  16. ^ Ley, Willy (June 1966). “The Re-Designed Solar System”. Galaxy Science Fiction: 94–106. https://archive.org/stream/Galaxy_v24n05_1966-06#page/n93/mode/2up. 
  17. ^ Avogadro, Amedeo (1811). “Masses of the Elementary Molecules of Bodies”. Journal de Physique 73: 58–76. オリジナルの12 May 2019時点におけるアーカイブ。. https://web.archive.org/web/20190512182624/http://web.lemoyne.edu/~giunta/avogadro.html 2022年8月25日閲覧。. 
  18. ^ Seymour H. Mauskopf (1969). “The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis”. Isis 60 (1): 61–74. doi:10.1086/350449. JSTOR 229022. 
  19. ^ Perrin, Jean, B. (1926). Discontinuous Structure of Matter Archived 29 May 2019 at the Wayback Machine., Nobel Lecture, December 11.
  20. ^ Heitler, Walter; London, Fritz (1927). “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik”. Zeitschrift für Physik 44 (6–7): 455–472. Bibcode1927ZPhy...44..455H. doi:10.1007/BF01397394. 
  21. ^ Pauling, Linus (1931). “The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules”. J. Am. Chem. Soc. 53 (4): 1367–1400. doi:10.1021/ja01355a027. 
  22. ^ Harry, B. Gray. Chemical Bonds: An Introduction to Atomic and Molecular Structure. pp. 210–211. オリジナルの31 March 2021時点におけるアーカイブ。. https://web.archive.org/web/20210331062040/https://authors.library.caltech.edu/105209/15/TR000574_06_chapter-6.pdf 2021年11月22日閲覧。 
  23. ^ How many gold atoms make gold metal?” (英語). phys.org. 2020年10月30日時点のオリジナルよりアーカイブ。2021年11月22日閲覧。
  24. ^ Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston: Pearson Prentice Hall. ISBN 978-0-13-250882-7. オリジナルの2 November 2014時点におけるアーカイブ。. https://web.archive.org/web/20141102041816/http://www.phschool.com/el_marketing.html 2012年2月5日閲覧。 
  25. ^ Campbell, Flake C. (2008) (英語). Elements of Metallurgy and Engineering Alloys. ASM International. ISBN 978-1-61503-058-3. オリジナルの31 March 2021時点におけるアーカイブ。. https://web.archive.org/web/20210331062041/https://books.google.com/books?id=6VdROgeQ5M8C&q=ionic+bonding+-wikipedia&pg=PA7 2020年10月27日閲覧。 
  26. ^ Roger L. DeKock; Harry B. Gray; Harry B. Gray (1989). Chemical structure and bonding. University Science Books. p. 199. ISBN 978-0-935702-61-3. オリジナルの31 March 2021時点におけるアーカイブ。. https://web.archive.org/web/20210331062042/https://books.google.com/books?id=q77rPHP5fWMC&pg=PA199 2020年10月27日閲覧。 
  27. ^ Chang RL; Deen WM; Robertson CR; Brenner BM (1975). “Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions”. Kidney Int. 8 (4): 212–218. doi:10.1038/ki.1975.104. PMID 1202253. 
  28. ^ Chang RL; Ueki IF; Troy JL; Deen WM; Robertson CR; Brenner BM (1975). “Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran”. Biophys. J. 15 (9): 887–906. Bibcode1975BpJ....15..887C. doi:10.1016/S0006-3495(75)85863-2. PMC 1334749. PMID 1182263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334749/. 
  29. ^ Wink, Donald J.; Fetzer-Gislason, Sharon; McNicholas, Sheila (2003) (英語). The Practice of Chemistry. Macmillan. ISBN 978-0-7167-4871-7. オリジナルの10 April 2022時点におけるアーカイブ。. https://web.archive.org/web/20220410070618/https://books.google.com/books?id=6wUmteTIc18C&q=empirical+formula&pg=PA288 2020年10月27日閲覧。 
  30. ^ ChemTeam: Empirical Formula”. www.chemteam.info. 2021年1月19日時点のオリジナルよりアーカイブ。2017年4月16日閲覧。
  31. ^ Hirsch, Brandon E.; Lee, Semin; Qiao, Bo; Chen, Chun-Hsing; McDonald, Kevin P.; Tait, Steven L.; Flood, Amar H. (2014). “Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals”. Chemical Communications 50 (69): 9827–30. doi:10.1039/C4CC03725A. PMID 25080328. オリジナルの31 March 2021時点におけるアーカイブ。. https://web.archive.org/web/20210331062049/https://zenodo.org/record/889879 2018年4月20日閲覧。. 
  32. ^ Zoldan, V. C.; Faccio, R; Pasa, A.A. (2015). “N and p type character of single molecule diodes”. Scientific Reports 5: 8350. Bibcode2015NatSR...5E8350Z. doi:10.1038/srep08350. PMC 4322354. PMID 25666850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322354/. 
  33. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). オンライン版:  (2006-) "Spectroscopy".
  34. ^ Anderson JB (May 2004). “Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)]”. J Chem Phys 120 (20): 9886–7. Bibcode2004JChPh.120.9886A. doi:10.1063/1.1704638. PMID 15268005. 






分子と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「分子」の関連用語

分子のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



分子のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの分子 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS