196問題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/21 01:53 UTC 版)
196(十進数)は最小の候補リクレル数であるため、最も注目されている。196がリクレル数か否かを求める問題(回文数になるまで196のリクレルプロセスを繰り返すこと)は「196問題」と呼ばれる。 1980年代、196問題はマイクロコンピュータのホビイストの注目を集めた。ジム・バターフィールドらによる検索プログラムが、いくつかの大衆向けコンピュータ雑誌に掲載された。 ジョン・ウォーカーは、リクレルプロセスを繰り返し、その都度回文数かどうかをチェックするCプログラムを書き、1987年8月12日にSun 3/260ワークステーションでプログラムを動かし始めた。このプログラムはバックグラウンドで優先度を低くして動作し、2時間ごとにファイルに復元ポイントを書き出し、システムがシャットダウンされると、これまでに到達した数と反復回数を記録した。システムがシャットダウンされるたびに、最後の復元ポイントから自動的に再起動した。約3年間稼働した後、1990年5月24日に100万桁に到達したため、以下のメッセージと共にプログラムは終了した。 Stop point reached on pass 2,415,836. Number contains 1,000,000 digits. 196は2,415,836回の反復を経て100万桁の数にまで成長していたが、回文数にはならなかった。ウォーカーは、最後の復元ポイントとともに自分の発見をインターネット上で公開し、これまでに到達した数を使っての探索の再開を他の人に呼びかけた。 1995年、ティム・アービン(Tim Irvin)とラリー・シムキンス(Larry Simkins)は、マルチプロセッサのコンピュータを使って、わずか3か月で200万桁にまで到達したが、回文数にはならなかった。その後、ジェイソン・ドーセットもこれに続き、2000年5月には1250万桁に到達した。ウェイド・ヴァンランディンガムは、ドーセットのプログラムを使用して1,300万桁に到達した。これは、カナダの子供向け科学雑誌「Yes Mag: Canada's Science Magazine for Kids」に掲載された記録である。2000年6月以降、ヴァンランディンガムは様々な愛好家が書いたプログラムを使って桁数を更新し続けている。2006年5月1日には3億桁(5~7日に1回100万桁のペース)を達成している。2011年にはRomain Dolbeauが分散処理を使用して10億回の反復計算を行い413,930,770桁に到達し、2015年2月には10億桁に到達した 。未だに回文数には到達していない。 他の候補リクレル数、879, 1997, 7059 についても同じブルートフォース法によるリクレルプロセスの繰り返し計算が行われているが、これらについても未だに回文数には到達していない。
※この「196問題」の解説は、「リクレル数」の解説の一部です。
「196問題」を含む「リクレル数」の記事については、「リクレル数」の概要を参照ください。
- 196問題のページへのリンク