発散級数の総和法に関する定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/29 21:31 UTC 版)
「発散級数」の記事における「発散級数の総和法に関する定理」の解説
総和法 M が正則であるとは、収束級数については通常の和と一致することである。総和法 M が正則であることを示す定理は(アーベルの定理が原型的な例であることから)M に対するアーベル型定理という(また、正則であるという代わりに「M についてのアーベル型定理が成り立つ」というように述べることもできる)。これの「部分的に逆」の結果を与えるタウバー型定理は、より重要で一般にはより捉えにくい(呼称は、原型的な例をアルフレッド・タウバーが与えたことによる)。ここで「部分的に逆」というのは M が級数 Σ を総和し、かつ「ある特定の付加条件を満たす」ならば、Σ はそもそも収束級数であるということを言っている。「なんらの付加条件をなにも課さない形でタウバー型定理が成立する」ならば M は収束級数だけしか総和できないという意味になる(これでは発散級数の総和法としては役に立たない)。 収束級数にその和を対応させる作用素は線型であり、ハーン-バナッハの定理によれば、これを部分和が有界となる任意の級数を総和する総和法に拡張することができる。しかしこの事実は実用上はあまり有用ではない。そういった拡張の大部分は互いに無矛盾とはならず、またそのような拡張された作用素の存在をしめすのに選択公理あるいはそれと同値なツォルンの補題などの適用を必要とするため、構成的に拡張を得られないためである。 解析学の領域での発散級数に関する主題としては、もともとはアーベル総和法やチェザロ総和法、ボレル総和といった明示的で自然な手法およびそれらの関係性に関心がもたれていた。ウィーナーのタウバー型定理(英語版、フランス語版)の出現が時代の契機となって、フーリエ解析におけるバナッハ環の手法との予期せぬ関連がこの主題に導入されることとなる。 発散級数の総和法は数値解法としての外挿法や級数変形法にも関係する。そのような手法として、パデ近似、レヴィン型級数変形および量子力学の高次摂動論に対する繰り込み手法に関係した次数依存写像 (order-dependent mapping) などが挙げられる。
※この「発散級数の総和法に関する定理」の解説は、「発散級数」の解説の一部です。
「発散級数の総和法に関する定理」を含む「発散級数」の記事については、「発散級数」の概要を参照ください。
- 発散級数の総和法に関する定理のページへのリンク