放射性同位体の壊変図式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/07/20 02:11 UTC 版)
それらの関係は複雑に込み入っている事もあるので、まずは簡単な例から示そう: コバルトの同位体であるコバルト60(60Co)の壊変図式を示す。60Coは電子を放出して崩壊し (ベータ崩壊)、半減期5.26年で励起状態の60Niになり、その崩壊の過程で極めて短い時間の間に2回のガンマ崩壊を起こす。 壊変図式は直交座標系と考えると非常に便利である。縦軸がエネルギーを表しており、下から上へと上昇していく。横軸は陽子数を表しており、左から右へと増加していくと考えることが出来る。ガンマ線(縦の矢印)はガンマ崩壊時に放出されるガンマ線エネルギーを表しており、ベータ線(斜めの矢印)はベータ崩壊時に放出されるベータ線の最大エネルギーを表している。 ニッケルはコバルトの右側にあるが、ニッケルの陽子数は28であり、コバルトの27よりも1つ多い。これはベータ崩壊において、1つの中性子が1つの陽子に変化しその結果陽子数が1つ増えているわけである。陽電子を放出するベータ崩壊(詳細はβ+崩壊を参照)や、後述のアルファ崩壊においては斜めの矢印は右から左へと向い、これらの場合は陽子数は減少する。 壊変図式においてエネルギーは保存しており、放出された粒子がエネルギーを運び去る。この為、矢印は必ず(垂直または斜めに)上から下へと向かう。 ここで幾らか別の種類の壊変図式も見てみよう:198Au は、天然の金(197Au)に中性子を照射することによって生成される。198Auはベータ崩壊により2つの励起状態を経由するか、もしくは直接水銀の同位体である198Hgへと崩壊する。図において、水銀は金の右側にあるが、金の原子番号は79であり、水銀は80である。励起状態からは極めて短い時間(2.5および23ピコ秒。1ピコ秒は1兆分の1秒、すなわち10-12秒である)で最終状態へと崩壊する。 励起状態の原子核は通常、極めて寿命が短く、崩壊はほとんどベータ崩壊の直後に起こるが(上記参照)、テクネチウムの励起状態は比較的長い寿命を持っている。このような原子核の事を核異性体(Nuclear isomer、または単にアイソマーという)。これはしばしば準安定状態と呼ばれる(準安定状態の英語表記meta stableの頭文字mを取って次のように表記される99mTc )。そのガンマ崩壊が起こるまでの平均寿命は6.01時間である。 例えばアルファ崩壊を例にする。マリ・キュリーによって発見されたポロニウムは、210の原子量を持つ。210Poは、ウラン系列に属し、その最後から2番目に位置し、それは安定な鉛の同位体へと半減期138日で崩壊する。殆ど全ての場合、崩壊は5.305MeVのアルファ粒子を放出して起こるが、0.001%の確率でα線のエネルギーが低いことがある。この場合、206Pbの励起状態へと崩壊してしまい、そこからガンマ崩壊によって安定状態へと崩壊する。
※この「放射性同位体の壊変図式」の解説は、「壊変図式」の解説の一部です。
「放射性同位体の壊変図式」を含む「壊変図式」の記事については、「壊変図式」の概要を参照ください。
- 放射性同位体の壊変図式のページへのリンク