導電性発現の機構とドーピング
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/04/15 08:34 UTC 版)
「ポリチオフェン」の記事における「導電性発現の機構とドーピング」の解説
導電性ポリマー中では、電子は共役系にそって非局在化している。これは普通π軌道の重なりを通してのものであり、π系が拡張されて価電子帯を形成している。このπ系から電子を取り除くか(pドーピング)、電子を与えると(nドーピング)、バイポーラロンと呼ばれる電荷を帯びた単位が生成する。 ドーピングは半導体 (<1%) と比べて高い割合 (20%–40%) で施される。バイポーラロンがポリマー鎖の中を移動することによって、巨視的な導電性が発現する。ヨウ素でドーピングしたポリ(3-ドデシル)チオフェンには導電率が 1,000 S/cm に達するものがある(銅は約 5× 105 S/cm)。一般的にポリチオフェン類の導電率は 1,000 S/cm を下回るが、導電性ポリマーの用途としては導電性の高さはあまり要求されない。 導電性ポリマーの酸化、および同時に起こる対アニオンの導入(pドーピング)は、電気化学的、もしくは化学的に行うことができる。ポリチオフェンの電気化学的合成を行う場合、ポリマーが電極表面に酸化型となって付着していくのと同時に、溶媒中に溶けている対イオンが取り込まれていく。合成と同時にドーピングを行うことにより、電極上に薄膜が生成していく。この際、生成した導電性ポリマーが基質から膜の表面上に電子を流している。また、中性のポリマー膜、もしくはその溶液を作ったあとでドーピングを行うことも可能である。 導電性ポリマーの還元(nドーピング)はpドーピングと比べ一般的ではない。ポリ(ビチオフェン)の電気化学的nドーピングにおける初期の研究から、nドーピングによるドープ率はpドーピングよりも低いこと、nドーピングのサイクルは効率が悪いこと、ドープ率が最大に達するまでに要するサイクル数が多いこと、そしてnドーピングの過程はおそらく対イオンの分散が原因となって速度論的に制限を受けるようであることが明らかにされている。 ポリチオフェンのドーピングにはさまざまな種類の試薬が使われている。ヨウ素や臭素は導電率の高いものを与えるが、不安定であり、素材中からゆっくりと蒸発していく。トリフルオロ酢酸、プロピオン酸、スルホン酸などの有機酸から得られるポリチオフェンはヨウ素のものより導電率が低いが、外的要因への安定性が高い。塩化鉄(III) による酸化重合を行うと、残存する触媒によりドーピングが起こる。ただし、マトリックス支援レーザー脱離イオン化法を使った質量分析 (MALDIMS) による研究から、ポリ(3-ヘキシルチオフェン)について、酸化剤によって部分的にハロゲン化されていることが示されている。トルエン中に溶解したポリ(3-オクチルチオフェン)は塩化鉄(III) 6水和物のアセトニトリル溶液でドーピングすることができ、導電率が 1 S/cm に達する膜として成型することができる 。他、より一般的ではないが、塩化金(III) やトリフルオロメタンスルホン酸もpドーピング剤として知られている。
※この「導電性発現の機構とドーピング」の解説は、「ポリチオフェン」の解説の一部です。
「導電性発現の機構とドーピング」を含む「ポリチオフェン」の記事については、「ポリチオフェン」の概要を参照ください。
- 導電性発現の機構とドーピングのページへのリンク