ランダムの行動
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/01/10 23:31 UTC 版)
「真に最難関の論理パズル」の記事における「ランダムの行動」の解説
ブーロスの3つ目の注釈は、ランダムの行動を以下のように説明している。 ランダムが真実を話すかどうかは、脳に隠されたコイン弾きに応じて考えるべきである。コインの表側が来れば彼は真実を話し、裏側なら虚偽である。 果たして、コイン弾きは質問の度になのか、または「セッション」つまり一連の質問全体に対してなのか、が述べられていない。仮にセッションの最後まで単一のランダム選択が続いていると解釈した場合、2つの質問だけでこのパズルを解決できることをラベーン達は示している。これは、回答者 (この場合はランダム)が真実の証人なのか嘘つきなのかに関係なく、Qに対する真実の答えが明らかになるよう反事実的条件法が設計されているためである。 反事実的条件に直面した時のランダム行動のもう一つ可能な解釈として、彼は頭の中にあるコイン弾きをした後で全体の質問に返答するが、質問が尋ねられている間は、以前の心の状態でQに対する答えを出している、ということがある。これはもう一度、反事実的条件をランダムに尋ねることが無意味になる。仮にこの場合だと、上述の質問に対する小さな変更が、ランダムから常に有意義な回答を引き出す質問を生むようになる。変更は次のとおり。 もし私があなたの現在の精神状態であなたにQを尋ねたら、あなたはjaと言うでしょうか? これは、ランダムから真実の証人と嘘つきの人格を効果的に引き出し、しかも彼にそれらの片方だけを強制させてしまう。そうすることで、パズルは完全に些細なものになる。つまり、真実の答えを簡単に得ることができる。しかしながら、質問に対する正しい答えを決定する前に、嘘をつくか真実を語るかをランダムが決定すると仮定する、そうしたことはパズルや注釈で述べられていない。 神Aに質問する「もし私があなたに「あなたはランダムですか?」とあなたの現在の精神状態に尋ねたら、あなたはjaと言いますか?」。もしAがjaと答えるなら、Aがランダム。そこでBに質問する「もし私があなたに「あなたは真ですか?」と尋ねたら、あなたはjaと言いますか?」。Bがjaと答えるなら、Bは真、Cは偽。 Bがdaと答えるなら、Bは偽、Cは真。どちらの場合もパズルは解決される。 もしAがdaと答えるなら、Aは非ランダム。そこでAに質問する「もし私があなたに「あなたは真ですか?」と尋ねたら、あなたはjaと言いますか?」。Aがjaと答えるなら、Aは真。 Aがdaと答えるなら、Aは偽。 Aに質問する「もし私があなたに「Bは真ですか?」と尋ねたら、あなたはjaと言いますか?」。Aがjaと答えるなら、Bがランダム。CはAの反対。 Aがdaと答えるなら、Cがランダム。BはAの反対。 ブーロスにより(「コインが表側ならば彼は真実を語り、もし裏ならば嘘を語る」と)明確化されたオリジナル問題を解決する過程において、意図的で無記述な仮定に頼らずとも、質問にさらなる変更を加えることによって、真実の答えを簡潔に得ることができる。 「もし私があなたにQを尋ねたら、そして仮にあなたがこの質問に答えているように正直にあなたが答えていたとすれば、あなたはjaと言うでしょうか?」 ここで唯一の仮定は、質問に答えている際にランダムが正直に答えている(「真実を語る」)かまたは偽って答えている(「嘘を語る」)かであり、これは明白にブーロスの注釈の一部である。修正なしのオリジナル問題(ブーロスの注釈付き)は、このように、最も洗練された分かりやすい見た目の解決法を有する「真に最難関の論理パズル」だと見なされている。 ラベーン達(2008)は、ランダムが実際のランダムになるように、ブーロスのオリジナルパズルを改正するよう提案している。その修正はブーロスの第3の明確な注釈を以下のものに置き換えることである。 ランダムがjaかdaを言うかどうかは、彼の頭脳に隠されたコイン弾きに応じて考えられるべきである。もしコインが表なら、彼はjaと言い、裏だったら彼はdaと言う。 この修正があると、パズルの解決には解決法項目の冒頭で与えられたものよりもさらに慎重な神への審問が必要になる。
※この「ランダムの行動」の解説は、「真に最難関の論理パズル」の解説の一部です。
「ランダムの行動」を含む「真に最難関の論理パズル」の記事については、「真に最難関の論理パズル」の概要を参照ください。
- ランダムの行動のページへのリンク