薬剤耐性のメカニズム
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/07 23:48 UTC 版)
薬剤耐性の病原体が、どのような生化学的メカニズムで、化学療法剤による排除から逃れるかについて、以下のように大別できる。 薬剤の分解や修飾機構の獲得 化学療法剤として用いられる薬剤を分解したり化学的に修飾する酵素を作り出し、それによって薬剤を不活性化することでその作用から逃れる。細菌やがん細胞の薬剤耐性機構として見られ、特に細菌による耐性獲得ではもっとも普遍的に見られる方法である。例えば、一般的なペニシリン耐性黄色ブドウ球菌(MRSAを除くもの)など、ペニシリナーゼやβ-ラクタマーゼを産生してペニシリンを分解することで薬剤耐性を示す。 薬剤作用点の変異 化学療法剤の標的になる病原体側の分子を変異させ、その薬剤が効かないものにすることで薬剤の作用から逃れる。微生物やがん細胞などに全般に見られる方法であり、ウイルスの薬剤耐性はほとんどこの機構によるものである。他に代表的なものとしてMRSA(メチシリン耐性黄色ブドウ球菌)がある。 薬剤の細胞外への排出 薬剤をエネルギー依存的に細胞外に排出することで、細胞内の薬物濃度を下げる。細菌やがん細胞など、細胞からなる病原体の耐性機構に見られる。代表的なものとして、グラム陰性細菌のRND型多剤排出ポンプ(例えば、大腸菌のAcrAB-TolC)やがん細胞の多剤排出ABCトランスポーター(ATP依存輸送タンパク質、P糖タンパク質)があげられる。また緑膿菌の自然耐性の高さもMexAB-OprMやMexXY-OprMのようなRND型多剤排出ポンプによって説明できる。 その他の機構 上記に当てはまらない例としては、葉酸の合成酵素を阻害して抗菌性を示すサルファ剤に対して、葉酸前駆体を過剰産生することで耐性になる例などが知られている。結核菌に代表される抗酸菌はミコール酸と呼ばれる特有の脂質に富んだ細胞壁を持つため、消毒薬や乾燥に対して高い抵抗性を有す。
※この「薬剤耐性のメカニズム」の解説は、「薬剤耐性」の解説の一部です。
「薬剤耐性のメカニズム」を含む「薬剤耐性」の記事については、「薬剤耐性」の概要を参照ください。
- 薬剤耐性のメカニズムのページへのリンク