色域の表現
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/05 06:50 UTC 版)
色域は右図で示すように CIE 1931 色度ダイアグラム内の領域として表現することが多く、曲線の境界線は単色を表している。 一般に色の再現には三原色を使うことが多いので、色域は三角形の領域となっていることが多い。 しかし、実際の色域は明るさも関係するので、完全な色域は左の図のように3次元空間で表現しなければならない。 RGB色域 自然の色の色域 左の図は、コンピュータディスプレイなどで使われるRGB色空間の色域(上)と自然界の反射色(下)を示している。灰色の線で描かれている円錐状の部分は右上のCIEダイアグラムと大まかに対応し、それに明るさの次元を加えている。 これらの図にある軸は、人間の目にある短い波長(S)、中間の波長(M)、長い波長(L)の錐体細胞の反応に対応している。その他の文字は、黒(Blk)、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、黄色(Y)、白(W)に対応している。なお、この図は縮尺的には正しくない。 左図のRGB色域の形状を見てみると、暗いところでは赤・緑・青の三角形になっているが、明るいところではシアン・マゼンタ・黄色の三角形になっており、最も明るいところに白色点がある。各頂点の正確な位置は、例えばブラウン管では蛍光物質の発光スペクトルで決まり、3種類の蛍光物質の最大光度の比率(すなわちカラーバランス)に左右される。CMYK色空間の色域は理想的にはRGBとほぼ同じだが、頂点の位置は微妙に異なり、染料の性質や光源に左右される。実際プリンタのように走査型で印刷した色は、隣接する部分に付着した染料が相互に影響しあい、紙からも影響を受ける。また、理想的な吸光スペクトルではないため、色域が小さくなり、その頂点部分も丸くなる。 自然界の反射色の色域もそれと似たような丸い形状となっているが、印刷色よりもさらに丸い。狭い帯域の周波数だけを反射する物体はCIEダイアグラムの境界線に近い色となるが、それは同時に非常に反射光が弱い(暗い)ということになる。明るいとCIEダイアグラムのうちでアクセス可能な領域はどんどん狭くなり、最終的に白の1点に収束し、その点ではあらゆる波長が100%反射されており、白色点の座標はもちろん光源の色で決まっている。
※この「色域の表現」の解説は、「色域」の解説の一部です。
「色域の表現」を含む「色域」の記事については、「色域」の概要を参照ください。
- 色域の表現のページへのリンク