結び目理論とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 学問 > 学術 > 分野 > 結び目理論の意味・解説 

結び目理論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/16 03:44 UTC 版)

結び目理論むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。素数と結び目にもエタールホモロジーを導入して密接に関係する。

自明な結び目(左上) や三葉結び目(その下)など、様々な結び目の例。
最も単純で重要な結び目である三葉結び目の正則表示。数学における結び目は閉曲線(両端が一致し連続する弧)である。

導入

たとえば日常で、靴の紐などを蝶結びするとき、ちょっとした違いで縦結びになったり横結びになったりすることはよく知られていることである。このようなとき、結び目理論では、紐の両端をつないで輪の形にすることで、これらの結び目が図形としてどのように異なるか(あるいは同じものなのか)ということを数学的に明らかにすることができる。

一般に、二つの結び目(あるいは絡み目)が同じであるかどうかは、ライデマイスター移動などの局所変形や交差の入れ替えなどの結び目解消操作を用いて調べられる。

結び目や絡み目の分類は、結び目不変量 (knot-invariant) あるいは絡み目不変量 (link-invariant) と呼ばれる "量" の発見と構成を主として行われる。例えば、絡み目の外部の基本群を周辺構造 (peripheral structure) 込みで考えたものは、結び目の完全不変量である。しかし、肝心のの分類が容易ではないためこれを不変量として用いることはほとんどないようである。主に使われる不変量はアレクサンダー多項式などの多項式不変量や、結び目解消数 (unknotting number) などである。

なお、Haken による正則曲面 (normal surface) の理論により、任意に与えられた 2 個の結び目が同値であるか否かを判定するアルゴリズムが存在することが知られている。

近年では DNAタンパク質異性体の構造などの研究や統計力学場の量子論にも関連して注目されている。

結び目は3次元多様体の形状を調べることにも利用できる。同様のことを次元を上げて一般化して考えようとすると、4次元空間では1次元の閉多様体である結び目はほどけてしまって役に立たないが、2次元の多様体である閉曲面を使ってやれば目的を果たすことができる。これを4次元結び目理論、曲面結び目理論などと呼んで結び目理論に含めることもある。

基本的な図形

ホワイトヘッド絡み目
ボロミアン環
野性的な結び目の例

一次元球面単位円周S1 から三次元ユークリッド空間 R3 または三次元球面 S3への単射連続写像 K あるいは K の像のことを結び目という。ここで、三次元球面 S3 とは R3 に、一点 {∞} を付け加えたコンパクト等質空間である。

要するに、三次元空間の中に浮かぶ絡まった 1 つの輪っかのことを数学では結び目というのである。日常語の意味での結び目とはかけ離れているように思われるが、紐の両端をくっつけて結び目を緩めた状態を想像してみると、なぜ上で言うようなものが数学で結び目と呼ばれるのか、実感できることと思われる。

結び目は絡まった輪っか一つだけである。二つ以上の結び目が互いに絡まりあったものを考えたほうがいろいろと便利であることが多いので、それを絡み目英語版と呼ぶ。正確には結び目と同様に次のように定義される。

いくつかの一次元球面の集合としての直和 S1S1 ∪ … ∪ S1 から 三次元球面 S3 への単射連続写像 L あるいはその像のことを絡み目と呼ぶ。絡み目の連結成分の数を単に絡み目の成分数と呼ぶ。すなわち n 個の S1 の直和を埋め込んだ絡み目の成分数は n である。

有名な絡み目としてはホップ絡み目ホワイトヘッド絡み目ボロミアン環などが挙げられる。

絡み目を離れた2つの部分に分けることができるとき、その絡み目は分離可能(splittable)であるといい、成分数と同じ数だけの部分に離して分けることができる場合は完全分離可能であるという。つまり、絡み目が2つ以上の連結成分のある射影図(#結び目の表示で後述)を持つときに分離可能であるといい、成分数と等しい個数の連結成分のある射影図を持つときは完全分離可能であるということになる。

結び目を切ったり貼ったりしている間に絡み目が現れることがあり、結び目のみを研究の対象とする場合でも絡み目を合わせて考えるほうが自然であることも多い。

絡み目の定義を少し変形拡張した概念が幾つか提唱され、特に以下のものは活発に研究されている。


結び目理論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/05 10:19 UTC 版)

計算論的トポロジー」の記事における「結び目理論」の解説

結び目自明か否か判定する問題NP属する。 結び目の種数決定する問題PSPACE属する[要出典]。 結び目アレキサンダー多項式計算する多項式時間アルゴリズム存在する

※この「結び目理論」の解説は、「計算論的トポロジー」の解説の一部です。
「結び目理論」を含む「計算論的トポロジー」の記事については、「計算論的トポロジー」の概要を参照ください。

ウィキペディア小見出し辞書の「結び目理論」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



結び目理論と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「結び目理論」の関連用語

結び目理論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



結び目理論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの結び目理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの計算論的トポロジー (改訂履歴)、幾何学的トポロジー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS