連結和とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 連結和の意味・解説 

連結和

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/21 06:30 UTC 版)

連結和の図

トポロジーでは、連結和(れんけつわ、connected sum)は、多様体の幾何学的変形の方法のひとつで、2つの多様体が与えられたとき、互いを選んだ点でつなぎ合わせる。この構成は、閉曲面の分類で重要な役割を果たす。

このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。

点での連結和

2つの m-次元多様体連結和は、各々の多様体の中にある球を削除し、境界として現れる球面を互いに貼り合わせる英語版(gluing together)ことにより得ることができる。

多様体が双方とも向きつけられていれば、貼りあわせ写像を反対向きにとることにより、一意に連結和が定義される。構成は球の選び方にかかわらず、結果は同相の下に一意である。滑らかなではこの操作は可能で、結果は微分同相の下に一意である。滑らかな圏での場合は、微妙な問題があり、球の境界の間のすべての微分同相が、たとえ向き付けを正しく選択したとしても、合成されたときに同じ多様体を与えるとは限らない。たとえば、ミルナー (Milnor) は、2つの 7-次元胞体がを境界に沿って貼りあわせると、結果はエキゾチック球面英語版(exotic sphere)となり、7-球に同相ではあるが微分同相ではなくなることをしめした。しかしながら、張り合わせる標準的な方法が存在して、連結和を一意に定義することができる。この一意性は円板定理英語版(disc theorem)に大きく依存していて、すべて明らかになっているわけではない。

連結和の操作は

各々の結び目の平面への射影を考え、これらの射影が共通部を持たないように想定する。
長方形の対辺が各々の共通部分をもたない 2つの結び目の一部の弧となっているような平面上の長方形を探す。
2つの結び目を、これらの弧を結び目より削除することにより互いにつなぎ合わせ、長方形の残っている対辺を結び目の中へ繰り入れる。

2つの結び目の連結和は、密接に関係した考え方である。実際、結び目を単に 1-次元多様体とみなすと、2つの結び目の連結和は、まさに 1-次元多様体としての連結和となる。しかし、結び目の本質的な性質は、その多様体の構造にあるのではなく(すべての結び目は円と同値である)、むしろ周囲の空間英語版(ambient space)への埋め込みにある。従って、結び目の連結和には、次のように、うまく定義される埋め込みを生成するようなより精密な定義がある。

この結果、新しいひとつの結び目が得られ、もとの 2つの結び目の連結和(あるいは、結び目和合成)という。次に、結び目の連結和に対し、3-次元空間の中での向き付けを持つ結び目を考えねばならない。2つの結び目の連結和を定義するには、

  1. 2つの結び目の平面への射影を考え、これらの射影が共通部分を持たないようにする。
  2. 長方形の対辺が各々の共通部分をもたない 2つの結び目の一部の弧となっているような平面上の長方系を探す。すると、長方形の対辺の結び目の一部の弧は、長方形の境界を回る向きと同じ向き付けがなされる。
  3. そこで、これらの弧を結び目から削除し、残る長方形の対辺を弧としてつなぎ合わせることにより、ひとつの結び目を得る。

この結果として生ずる結び目の連結和は、2つのもともとの結び目の向き付けと整合性を持っていて、結果として得られる周囲の向き付けのイソトピークラス(isotopy class)は、うまく定義でき、もとの 2つ結び目の周囲の向き付けのイソトピーに依存している。

この操作の下では、3-次元空間内の向きつけられた結び目は、一意は素因数分解を持つ可換なモノイドを形成し、そこでは素結び目英語版(prime knot)の意味を定義することができる。可換性の証明は、連結和全体を縮め、片方の結び目を非常に小さくし他の結び目に沿って滑らせることができるようにして、示すことができる。自明な結び目は単元である。三葉結び目(trefoil)は(自明結び目を除くと)最も単純な素結び目である。高次元の結び目は、 カテゴリ

  • コモンズ



  • 英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「連結和」の関連用語











    連結和のお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    連結和のページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアの連結和 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

    ©2025 GRAS Group, Inc.RSS