温度による電気抵抗の変化
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/16 02:51 UTC 版)
「電気抵抗」の記事における「温度による電気抵抗の変化」の解説
常温付近では、主な金属の電気抵抗は温度上昇に比例して増大し、主な半導体の電気抵抗は逆に低下していく。電気抵抗の温度による変化量は、その材質の電気抵抗率の温度係数α を使って、次の式で計算できる。 R ( T ) = R 0 [ 1 + α ( T − T 0 ) ] {\displaystyle R(T)=R_{0}[1+\alpha (T-T_{0})]\,\!} ここで T は温度、T0 は基準温度(一般に常温)、R0 は T0 における電気抵抗、α は単位温度当たりの電気抵抗の変化率である。α は対象とする物質によって決まる定数である。ただしこの式は近似的なものであって、電気抵抗の変化は物理的には非線形であり、α が温度によって変化する。そのため α にはそれを測定したときの温度を添えるのが一般的で α15 などと表し、その温度周辺でしか使えないことを示す。 低温(デバイ温度未満)では、温度低下に伴ってフォノンによる電子散乱が少なくなるため、T5 に比例して金属の電気抵抗が低下していく。さらに低温になると、電気抵抗の主要因は電子同士の衝突となり、T2 に比例して温度低下と共に電気抵抗が低下していく。ある温度まで下がると金属内の不純物が電子散乱の主要因となり、電気抵抗はある値より低下しなくなる。マーティセンの法則(1860年代に Augustus Matthiessen が定式化。下記の式はそれを現代風にしたもの)によれば、それらの異なる振る舞いの総和によって温度と電気抵抗の関係が表されるとしている。 R = R imp + a T 2 + b T 5 + c T {\displaystyle R=R_{\text{imp}}+aT^{2}+bT^{5}+cT\,} ここで Rimp は不純物によって決まる最低の電気抵抗で、温度によって変化しない。係数 a、b、c は金属の特性によって決まる。この法則を確かめる実験を行ったヘイケ・カメルリング・オネスは1911年、超伝導を発見することになった。 真性半導体は高温になると良導体となる。熱エネルギーによって電子が励起して伝導帯に移り、価電子帯に正孔を残す。そうした電子は自由に動けるようになり、正孔も自由に動くことができる。典型的な真性半導体の電気抵抗は温度上昇に伴って指数関数的に低下する。 R = R 0 e − a T {\displaystyle R=R_{0}e^{-aT}\,} 不純物半導体の電気抵抗と温度の関係は遥かに複雑である。絶対零度から温度を上げていくと、ドナー原子あるいはアクセプター原子から電荷担体が離れていくため、電気抵抗は急激に低下していく。ほとんどのドナー原子やアクセプター原子が電荷担体を失うと、金属とほぼ同様の状態となるため、温度上昇に伴って若干電気抵抗が上昇しはじめる。さらに温度が上昇するとドナー/アクセプターによる電荷担体はあまり支配的ではなくなり、真性半導体と同様に熱エネルギーで励起された電子とそれによって生じた正孔が電流を担うため、電気抵抗は急激に低下する。 電解液や不導体の電気抵抗は非線形に変化し、材質によってそれぞれ異なる変化を示す。そのため一般的な式を示すことはできない。
※この「温度による電気抵抗の変化」の解説は、「電気抵抗」の解説の一部です。
「温度による電気抵抗の変化」を含む「電気抵抗」の記事については、「電気抵抗」の概要を参照ください。
- 温度による電気抵抗の変化のページへのリンク