反発の度合い
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/11/21 15:13 UTC 版)
「原子価殻電子対反発則」の記事における「反発の度合い」の解説
全体構造は、「結合」電子対と「非結合」電子対との間を区別することによってさらに精緻化される。結合電子対は隣合う原子との間のσ結合で共有されている。隣りの原子と非結合(非共有)電子対とを比べると、正の電荷を持つ原子核の近くに保持されている非結合電子対よりも隣りの原子の方が中心原子から遠くに位置している。VSEPR理論はしたがって非共有電子対による反発の方が結合電子対による反発よりも大きいと見る。そのようなものとして、分子が反発の程度が異なる2つの相互作用を持つ時、VSEPR理論は非共有電子対がより反発を受けないような位置を占める構造を予測する。非共有電子対–非共有電子対(lp–lp)反発は非共有電子対–結合電子対(lp–bp)反発よりも強いと見なされ、非共有電子対–結合電子対反発は結合電子対–結合電子対反発よりも強いと見なされる。この違いが、2つ以上の非等価な位置が可能な時に全体構造を決定する助けとなる:410–417。例えば、5つの価電子対が中心原子を取り囲んでいる時、それらは2つが共線的「アキシアル」(軸方向)位、3つが「エクアトリアル」(赤道方向)位にある三方両錐形分子構造を取る。アキシアル位の電子対からは90° しか離れていない位置に3つのエクアトリアル位電子対と180° 離れた位置に逆側のアキシアル位電子対がある。それに対して、エクアトリアル位電子対は90° の位置には2つだけ、120° の位置に2つの電子対を持つ。アキシアル位はエクアトリアル位よりも反発を受けるため、90° と近くにある電子対からの反発がより重要である。したがって、非共有電子対が存在する時、それらは次節の図で示されているように立体数が5の時のエクアトリアル位を占める傾向にある。 非共有電子対と結合電子対との間の違いは、理想的な構造からのずれを合理的に説明するためにも使うことができる。例えば、H2O分子はその原子価殻に4つの電子対(2つの非共有電子対および2つの結合電子対)を持つ。4つの電子対は四面体の頂点を大雑把に指すように広がる。しかしながら、2つのO–H結合間の結合角は正四面体の109.5° ではなくわずか104.5° である。これは、2つの非共有電子対(それらの電子対は酸素原子核に近い位置にある)が2つの結合対よりも大きな相互反発を及ぼすためである:410–417。 上級の説明では、上述した差異を2つの規則で置き換える。 ベント則: より電気的陽性の配位子の電子対より大きな反発を生む。これは、なぜPClF4中のClがエクアトリアル位を好み、なぜ二フッ化酸素の結合角(103.8°)が水のもの(104.5°)よりも小さいかを説明する。非共有電子対は、電気的陽性の極限にある「虚配位子」によって規則が守られている、この規則の特殊な場合と考えられる。 より高い結合次数はより大きな反発を生む 。これは、なぜホスゲンにおいて、塩素は酸素よりも電気的に陽性であるにもかかわらず、酸素–塩素結合角(124.1°)が塩素–塩素結合角(111.8°)よりも大きいかを説明する。炭酸イオンでは、共鳴のため3つの結合角全てが等価である。
※この「反発の度合い」の解説は、「原子価殻電子対反発則」の解説の一部です。
「反発の度合い」を含む「原子価殻電子対反発則」の記事については、「原子価殻電子対反発則」の概要を参照ください。
- 反発の度合いのページへのリンク