NMOSとCMOS
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/01/14 17:00 UTC 版)
NMOSとPMOS技術において、ゲート構造に与えられる正の電圧は、正に帯電したゲートのすぐ下での正に帯電したナトリウム不純物をゲート絶縁膜に拡散させ、あまり正に帯電していないチャネル表面へ移動させ、正のナトリウム電荷がチャネル形成により大きな効果をもつ。よってNチャネルトランジスタの閾値電圧を低下させ、徐々に故障を引き起こす可能性がある。それまでのPMOS技術は、この効果に対して敏感ではなかった。なぜなら正に帯電したナトリウムは負に帯電したゲートに自然に引き付けられ、チャネルから離れ、閾値電圧のシフトを最小化したためである。(1970年代の)Nチャネル、金属ゲートプロセスは、その時代では達成が難しい非常に高い水準の清浄度(ナトリウムが無いこと)を必要とし、高い製造コストとなった。ポリシリコンゲートもこの現象に対して敏感だが、その後の高温プロセス(ゲッタリングと一般に呼ばれる)の間、少量のHClガスを流してナトリウムと反応させNaClを作り、ガス流でそれを取り除くことでナトリウムフリーなゲート構造を作り、信頼性を大きく高めた。しかし実用レベルでドープされたポリシリコンは、金属のようなゼロに近い電気抵抗が得られないためトランジスタのゲート容量を充電・放電するのに理想的ではなく、遅い回路となる。 45nmノードから、インテルが先駆けとなり高誘電率(High-k)材料の使用と一緒にメタルゲート技術が戻った。 メタルゲート電極の候補として、NMOSではTa、TaN、Nb(シングルメタルゲート)、PMOSではWN/RuO2(PMOSメタルゲートは通常2つの金属層から成る)がある。この場合、チャネルでのひずみ容量は(メタルゲートによって)良くなる。さらに(メタル内で電子の配列により)ゲートでの電流振動が小さくなる。
※この「NMOSとCMOS」の解説は、「メタルゲート」の解説の一部です。
「NMOSとCMOS」を含む「メタルゲート」の記事については、「メタルゲート」の概要を参照ください。
- NMOSとCMOSのページへのリンク