Algorithmic Probability
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/03/20 15:36 UTC 版)
「レイ・ソロモノフ」の記事における「Algorithmic Probability」の解説
1960年代より以前、確率を計算するには頻度に基づくのが普通だった。試行回数に対して、希望の結果が得られた回数の比率を求めるのである。1960年のソロモノフの論文では、この確率の定義が大きく改訂されており、1964年の論文でさらに完全なものとなっている。 後にコルモゴロフ複雑性と呼ばれることになる基本定理は、ソロモノフの理論にも含まれていた。1960年の論文の導入部に次のような一節がある。 非常に長い記号列を考えてみよう。…その記号列についての非常に簡単な説明があり、もちろん所定の記述方法を使っているなら、我々はその記号列が「単純」であるとみなすことができ、アプリオリな高い確率で予測することができる。より正確に言えば、0と1だけで何かを表現する場合、それが N 桁の二進数が可能な限り最短の表現であれば、その確率として 2-N を割り当てることになる。 この確率は、特定の万能チューリング機械(英語版)への参照と結びついている。ソロモノフは機械の選択を示し、1964年には証明したが、定数因子を加えても確率の比率はあまり変化しないということも示した。それらの確率は機械独立である。 1965年、ロシア人数学者コルモゴロフが独自に同様の考え方を発表した。コルモゴロフは後にソロモノフの業績を知り、ソロモノフの業績を認めた。その後数年間は、西欧よりもソ連でソロモノフの業績がよく知られるようになった。しかし学会全体としては、記号列の無作為性をより強調したコルモゴロフの名が結び付けられる結果となった。ソロモノフの Algorithmic Probability は記号列の外挿による予測に重きを置いていた。 後に1960年の後の時点で、ソロモノフは単一最短符号理論の拡張版を発表している。それが Algorithmic Probability である。彼は「記号列を説明するいくつかの異なる方法があるとき、それぞれの方法が記号列の確率を決定する際に何らかの重みを与えられるべきと思われる」と記している。そして、この考え方を使って汎用的でアプリオリな確率分布を生成する方法と、ベイズの定理を帰納推論に使えるようにする方法を示している。帰納推論は、特定の記号列を説明する全モデルの予測を加算することにより、それらのモデルの長さに基づいた適切な重み付けを使うことで、その記号列の拡張の確率分布を得る。この推論方法は後に「ソロモノフ推論」とも呼ばれるようになった。 その後もいくつかの論文を発表しつつ理論を発展させていき、1964年の発表へとつなげた。1964年の論文では Algorithmic Probability とソロモノフ推論についてより詳細に述べており、Universal Distribution と呼ばれるモデルを含む5つのモデルを提示している。
※この「Algorithmic Probability」の解説は、「レイ・ソロモノフ」の解説の一部です。
「Algorithmic Probability」を含む「レイ・ソロモノフ」の記事については、「レイ・ソロモノフ」の概要を参照ください。
Weblioに収録されているすべての辞書からAlgorithmic Probabilityを検索する場合は、下記のリンクをクリックしてください。

- Algorithmic Probabilityのページへのリンク