細胞内チオール環境の維持
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/12 03:42 UTC 版)
「グルタチオン」の記事における「細胞内チオール環境の維持」の解説
酸素は好気呼吸を行う生物にとって欠くことができないが、その反面、過酸化水素や酸素ラジカル(活性酸素種)が発生する原因ともなる。活性酸素種は反応性が高く、脂質やタンパク質を無秩序に酸化し(過酸化物)、生体に深刻なダメージを与える(酸化ストレス)。このため好気呼吸を行う生物は活性酸素種を消去し(還元して酸素や水に戻す)、また活性酸素種によってダメージを受けた部分を修復する機構を備えている。 細胞内で抗酸化作用を果たすものの1つとしてチオール基の働きが挙げられ、グルタチオンはチオール基を有する生体物質の中では細胞内に最も豊富に存在する。グルタチオンは、細胞内で発生した活性酸素種や、過酸化物と反応してこれを還元し、消去する。過酸化物の消去はグルタチオンペルオキシダーゼによって触媒され、活性酸素種はグルタチオンが直接反応する。いずれの反応においてもグルタチオンは相手を還元し、自らは酸化される。グルタチオン還元酵素は、NADPHの還元力を利用して酸化型グルタチオンを直ちに再還元する(参考: 酸化型グルタチオンの酸化還元電位 GSSG + 2 e → 2 GSH: −240 mV)。このため、還元型グルタチオンの濃度は通常一定に保たれており、これは細胞内のチオール濃度が一定に保たれていることも意味する。何らかの原因で還元型と酸化型の比率が大きく崩れた場合は、酸化型グルタチオンが細胞外に積極的に排出される。 グルタチオンは、酸化ストレスによってタンパク質中のレドックス活性なシステインとジスルフィド結合を形成するS-チオール化というレドックス翻訳後修飾を引き起こす(S-グルタチオン化)。S-グルタチオン化は、酸化ストレスに応答してチオールタンパク質の活性や機能を制御する重要なメカニズムである。酸化ストレスによって蓄積した過酸化水素 (H2O2)などによりタンパク質内チオールはスルフェン酸に酸化され、さらにスルフィン酸、スルホン酸まで順次酸化される。通常、チオールの酸化により生じたスルホン酸は不可逆的修飾であり、タンパク質の活性および機能は失われる。一方、タンパク質のスルフェン酸に対しグルタチオンが反応し、ジスルフィド結合を形成することで(S-グルタチオン化)不可逆的な過酸化を防ぐことが可能である。S-グルタチオン化は可逆的であり、細胞内レドックスが還元状態になるとグルタレドキシンおよびチオレドキシン系を介して元のチオールの状態に還元される。 グルタチオンはタンパク質中のジスルフィド結合の切断にも関与している。グルタレドキシンの触媒作用によってジスルフィド結合が還元され2つのチオール基に戻り、グルタチオンは酸化される。この反応は「チオール交換反応」と呼ばれる。 また、グルタチオンは細胞のシステイン源でもある。グルタチオンは、細胞外にあるγ-グルタミルトランスペプチターゼとジペプチターゼによって、構成アミノ酸であるグルタミン酸、システイン、グリシンにまで分解された後、細胞内に取り込まれる(大腸菌ではジペプチターゼは細胞内にある)。これらはアミノ酸源として利用される他、細胞内のグルタチオン再合成にも使われる。システインは単独で存在すると、容易に2分子が反応してシスチンとなり、その際ラジカルを発生する。このため、細胞中のシステイン濃度は比較的低く抑えられており、グルタチオンがシステインの貯蔵庫として利用されると考えられる。また酵母では、グルタチオンは、窒素源としても利用されると考えられている。
※この「細胞内チオール環境の維持」の解説は、「グルタチオン」の解説の一部です。
「細胞内チオール環境の維持」を含む「グルタチオン」の記事については、「グルタチオン」の概要を参照ください。
- 細胞内チオール環境の維持のページへのリンク