成層構造
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/18 04:53 UTC 版)
深度が深くなるにつれ、温度・密度ともに上昇するが、特に密度については、鉱物相が相転移することにより不連続に増加する。410 km、520 km、660 km、2,700 kmの地点に地震波の不連続面があり、これが相転移の境界と考えられている。この中では660 km不連続面は明瞭であり、これを境に上部マントルと下部マントルに分けている。鉱物相による分類については、上位からかんらん石(α相)、変形スピネル相(β相、ウォズレイアイトとも)、スピネル相(γ相、リングウッダイトとも)、ペロブスカイト相、ポストペロブスカイト相(D’’層 ディーツープライム とも)となっている。マントル構成物質は、この境界を移動するごとに相転移し結晶構造が変化、密度も変化する。 かんらん石の層はモホ面から440 km不連続面までで、マントルの最上部を占める。この層は、地殻とともに圧力や温度、水分含有量などの条件により、部分溶融を起こしマグマを生成する。変形スピネル相およびスピネル相はマントル遷移層または転移層とも呼ばれている。660 km以深のペロブスカイト相の層では、圧力は23.4 GPaを超えている。スピネル相構造のかんらん石が分解され、マグネシオウスタイト (Mg,Fe)Oと稠密な構造のペロブスカイト MgSiO3 とで構成されている。2,700 km以深のマントルの最下部はD’’層とも呼ばれ、ペロブスカイト相よりも稠密で密度も高いポストペロブスカイト相となっている。ポストペロブスカイト相の発見は、2004年のことである。核境界付近の構造は不明な部分も多く、下部マントル層の深部で核に接している部分は薄い層が溶解し、この溶解部分からマントル・プリュームが上昇しているのではないかという説がある。 また、マントルを力学性質から分類すると、上位から地殻と合わせてリソスフェア、アセノスフェア、メソスフェアに分類される。リソスフェアは地殻も含んだマントル上部の層で、温度・密度が低く、剛性も高い。その下面は60 – 100 kmの地点にある。リソスフェアはプレートテクトニクスにおけるプレートにほぼ相当する部分で、地表面を移動している。アセノスフェアはリソスフェアとメソスフェアの間にある層で、100 – 300 kmの間にある。地震波の低速度域であり、物質が部分溶融し、流動性を有している。低速度域のみがアセノスフェアとされるが、場合によっては下限を660 kmの面と考える説もある。メソスフェアはマントルの大部分を占め、高い剛性を有する固体と考えられている。
※この「成層構造」の解説は、「マントル」の解説の一部です。
「成層構造」を含む「マントル」の記事については、「マントル」の概要を参照ください。
- 成層構造のページへのリンク