凧形
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/22 14:36 UTC 版)
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2023年5月) |
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
凧形(たこがた、英: kite)は、四角形の種類で、隣り合った2本の辺の長さが等しい組が2組ある図形である。菱形(ひし形)は4本の辺が全て等しい四角形であり、凧形の特殊な形である。「向かい合った」2本の辺(対辺)が2組とも等しい四角形は平行四辺形であり、凧形とは異種の図形である。

凧形では対角線は直交し、異なる長さを持つ2辺によってつくられる2つの向かい合う角の大きさは互いに等しい。また凧形は2つの合同な三角形を同じ角を持つ頂点同士が重なるように並べたものである。ただしその場合は180°以上の内角があってはならない。
凧形は線対称な図形で対称軸は2つの内角を二等分しているほうの対角線である。しかし一般には点対称な図形ではない。
全ての凧形は円に外接する。つまり4本の内角の二等分線は一点で交わり、その点が内接円の中心である。
凧形の面積
凧形の面積Sを求めるには S = (対称軸を境に分けた三角形の面積)× 2 で求めてもよいが、以下の式