一般的な解決策
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/08 09:39 UTC 版)
問題に対しすべて可能な解決策を含む説明的な幾何学範囲の一連の解決策において単一の3次元オブジェクト(通常は円錐)で表され、その要素の方向は、無限の数の解のビューの任意のビュー(投影)の方向となる。 たとえば、一般的な位置(飛行中のロケットなど)の2つの不等長の斜め線が現れるような一般的な解を見つけるには: 等長 等しい長さと平行 等しい長さおよび垂直(例えば、少なくとも1つの理想的な標的化のため) 指定された比率の長さが等しい その他 これらの例では、それぞれの所望の特徴的な解についての一般的な解は円錐であり、その各要素は、無限の解のビューの1つを生成する。2つの円錐の間の2つの交点要素(円錐が接している場合には1つの要素)のいずれかの方向に突出し、上述のような2つ以上の特性が所望されている(解決策が存在する)場合、ソリューションビュー、円錐が交差しない場合、解は存在しない。以下の例は使用される記述的な幾何学的原理を示すために注釈が付けられている。TL =真の長さ。EV =エッジビュー。 また、以下の図1から3は、(1)画法幾何学、一般的解、および(2)同時に、正立法、多視点、レイアウト形式で潜在的に提示される標準解を示す。 潜在的な標準は、2つの隣接する標準的な正法ビュー(ここでは、正面と上面)と標準の「折りたたみ線」を使用。ソリューションビューに到達するためには、標準的な2ステップのシーケンスで、オブジェクトの周りを90°回りに「回路的にステップ」する必要がないので(この場合、ソリューションビューに直接進むことができる)、この短いプロトコルがレイアウトのために説明される。1ステッププロトコルが2ステッププロトコルに置き換わる場合、「二重折り畳み」ラインが使用される。言い換えれば、二重線を横切ったとき、彼は90°の旋回をしていないが、正反対の回転は解決法のビューに直接向いている。大抵のエンジニアリングコンピュータグラフィックスパッケージは、ガラスボックスモデルの6つの主なビューと等角図を自動的に生成する
※この「一般的な解決策」の解説は、「図法幾何学」の解説の一部です。
「一般的な解決策」を含む「図法幾何学」の記事については、「図法幾何学」の概要を参照ください。
- 一般的な解決策のページへのリンク