フレドホルム作用素とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > フレドホルム作用素の意味・解説 

フレドホルム作用素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:53 UTC 版)

数学の分野におけるフレドホルム作用素(フレドホルムさようそ、英語: Fredholm operator)とは、積分方程式に関するフレドホルム理論において登場するある作用素のことを言う。数学者のエリック・イヴァル・フレドホルムの名にちなむ。

フレドホルム作用素は、二つのバナッハ空間の間の有界線形作用素であって、そのおよび余核が有限次元であり、その値域であるようなもののことを言う(最後の条件は実際には必要ない[1])。またそれと同値な定義として、ある作用素 T : X → Y がフレドホルム作用素であるとは、それがコンパクト作用素を法として可逆な作用素である(適当なコンパクト作用素の違いを除いて可逆である)こと、というものがある。すなわち

国立図書館その他



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「フレドホルム作用素」の関連用語











フレドホルム作用素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フレドホルム作用素のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフレドホルム作用素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS