弱作用素位相とは? わかりやすく解説

弱作用素位相

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/06 20:30 UTC 版)

数学関数解析学の分野における弱作用素位相(じゃくさようそいそう、: weak operator topology; WOT)とは、ヒルベルト空間 H 上の有界作用素全体の成す集合上の位相で、各作用素 T を複素数 Tx, y に写す汎函数が任意のベクトル x, yH に関して連続となるようなものの中で最弱のものである。

有界作用素のネット TiB(H) が WOT に関して TB(H) に収束するとは、H* 内の任意の y* および H 内の任意の x に対して、ネット y*(Tix) が y*(Tx) へと収束するときにいう。

B(H) 上の他の位相との関係

WOT は、一般的なB(H) 上の位相の中では最も弱いものである。ここで B(H) はヒルベルト空間 H 上の有界作用素すべてからなる集合を表す。

強作用素位相

B(H) 上の強作用素位相(あるいは、SOT)は、各点収束の位相である。内積が連続関数であることから、SOT は WOT よりも強いことが分かる。次の例は、この包含関係が厳密なものであることを示すものである: H =  2(N) とし、片側シフト T の列 {Tn} を考える。コーシー-シュワルツを応用することにより、WOT において Tn → 0 となることが示される。しかし、明らかに Tn は SOT においては 0 には収束しない。

強作用素位相において連続であるような、ヒルベルト空間上の有界作用素からなる集合上の線型汎函数は、WOT においても連続である。このことから、WOT における作用素の凸集合閉包は、SOT におけるそのような集合の閉包と等しいことが分かる。

偏極恒等式により、SOT においてネット Tα → 0 が成立するための必要十分条件は、WOT において Tα*Tα → 0 が成立することであることが分かる。

弱スター作用素位相

B(H) の前双対は、トレース級作用素の集合 C1(H) であり、それは弱スター作用素位相英語版あるいは σ-弱位相と呼ばれる、B(H) 上の w*-位相を生成する。そのような弱作用素位相と σ-弱位相は、B(H) 内のノルム有界集合上で一致する。

WOT において、ネット {Tα} ⊂ B(H) が T へと収束するための必要十分条件は、Tr(TαF) がすべての有限ランク作用素 F に対して Tr(TF) へと収束することである。すべての有限ランク作用素はトレース級であるため、このことは WOT が σ-弱位相よりも弱いことを意味する。この主張がなぜ正しいのか理解するためには、すべての有限ランク作用素 F は有限和 F = ∑ λi uivi* であることを思い出す必要がある。すなわち、WOT において {Tα} が T へと収束するということは、Tr(TαF) = ∑ λi vi*(Tαui) が ∑ λi vi*(T ui) = Tr(TF) へと収束することを意味する。

わずかに拡張することで、弱作用素位相と σ-弱位相は B(H) 内のノルム有界集合上で一致するということを示すことが出来る: すべてのトレース級作用素は S = ∑ λi uivi* という形で表される。ここで正の数からなる級数 ∑λi は収束するものとする。supα ||Tα|| = k < ∞ および、WOT において TαT へと収束することを仮定する。すべてのトレース級 S に対して、Tr (TαS) = ∑λi vi*(Tαui) は∑ λi vi*(T ui) = Tr(TS) へと収束することが、例えば優収束定理が用いられることで、示される。

以上から、バナッハ-アラオグルの定理によって、すべてのノルム有界集合は WOT においてコンパクトであることが分かる。

他の性質

定義よりただちに、共役作用 TT* は WOT において連続であることが分かる。

積(multiplication)は、WOT において共同で連続(jointly continuous)ではない: 再び、T を片側シフトとする。コーシー-シュワルツより、Tn および T*n のいずれも WOT において 0 に収束することが分かる。しかし、T*nTn はすべての n に対して恒等作用素である(有界集合上では WOT は σ-弱位相と一致するため、σ-弱位相においても積は共同で連続ではない)。

しかしながら、一つの弱い主張は成立する: 積は WOT においてそれぞれに連続(separately continuous)である。もし WOT においてネット TiT が成立するなら、STiST および TiSTS が WOT において成立する。

関連項目

参考文献


弱作用素位相

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/05 03:33 UTC 版)

弱位相」の記事における「弱作用素位相」の解説

X と Y を位相ベクトル空間とするとき、連続線型作用素空間 L(X,Y) に下記のように弱作用素位相を定義できる: 定義 ― Kを R {\displaystyle \mathbb {R} } 、 C {\displaystyle \mathbb {C} } 、もしくはより一般に位相体とし、X、YをK上の位相ベクトル空間とし、L(X,Y)をXからY連続線形写像全体集合とする。 このとき、任意のx ∈ Xと任意のα ∈ Y*に対し、 T ∈ L ( X , Y ) ↦ α ( T ( x ) ) ∈ K {\displaystyle T\in L(X,Y)\mapsto \alpha (T(x))\in K} が連続になる最弱位相をL(X,Y)の弱作用素位相という。 X 上の弱位相場合と同様、L(X,Y)上の弱作用素位相もセミノルムによって特徴づけられる: 命題 ― K、X、Y、L(X,Y)を上の定義と同様に取る。 このとき、x ∈ X、α ∈ Y*に対しL(X,Y)上のセミノルムを ‖ T ‖ x , α = | α ( T ( x ) ) | {\displaystyle \|T\|_{x,\alpha }=|\alpha (T(x))|} により定義すると、L(X,Y)上の弱作用素位相はセミノルムの族 ( ‖ ⋅ ‖ x , α ) x ∈ X , α ∈ Y ∗ {\displaystyle (\|\cdot \|_{x,\alpha })_{x\in X,\alpha \in Y^{*}}} が定め位相一致する連続線形写像空間L(X,Y)上には弱作用素位相以外にも強作用素位相、*弱作用素位相(英語版)など複数位相が入る。詳細作用素位相参照されたい。

※この「弱作用素位相」の解説は、「弱位相」の解説の一部です。
「弱作用素位相」を含む「弱位相」の記事については、「弱位相」の概要を参照ください。

ウィキペディア小見出し辞書の「弱作用素位相」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「弱作用素位相」の関連用語

弱作用素位相のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



弱作用素位相のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの弱作用素位相 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの弱位相 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS