1の分割とは? わかりやすく解説

1の分割

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/10/22 02:06 UTC 版)

数学において位相空間 X1 の分割(いちのぶんかつ、: partition of unity)は、X から単位区間 [0, 1] への連続関数の集合 R であって、すべての点

4 つの関数による円の 1 の分割。円はグラフを書くために線分(底の実線)にアンロールされている。上の破線は分割の関数の和である。

1 の分割は、しばしばそれによって局所的な構成を空間全体に拡張することができるから、有用である。またデータの内挿信号処理スプライン曲線の理論においても重要である。

存在

1 の分割の存在は 2 つの異なる形式を仮定する:

  1. 空間の任意の開被覆 {Ui}iI が与えられたとき、同じ集合 I 上添え字づけられた分割 {ρi}iI が存在して、supp ρiUi。そのような分割を開被覆 {Ui}i に属する (subordinate to the open cover) と言う。
  2. 空間の任意の開被覆 {Ui}iI が与えられたとき、別のでもよい添え字集合 J 上添え字付けられた分割 {ρj}jJ が存在して、各 ρjコンパクト台を持ち各 j ∈ J に対してある i ∈ I が存在して supp ρjUi

したがって、開被覆によって添え字付けられたを持つかコンパクト台を持つかを選ぶ。空間がコンパクトであれば、どちらの要求も満たす分割が存在する。

有限開被覆は、空間が局所コンパクトかつハウスドルフであれば、それに属する 1 の連続分割を必ず持つ[1]。空間のパラコンパクト性は任意の開被覆に対しそれに属する 1 の分割が存在することを保証する必要条件である。空間が属するに依っては十分条件でもある[2]。構成は軟化子隆起関数)を用いる。これは連続で滑らかな多様体 には存在するが、解析的多様体英語版には存在しない。したがって解析的多様体の開被覆に対しては、その開被覆に属する 1 の解析的分割は一般には存在しない。

RS がそれぞれ空間 XY の 1 の分割であれば、元ごとの積全体の集合 カルテジアン積空間 X×Y の 1 の分割である。

少し異なる定義

制限の少ない定義が使われることがある: 空間の各点に対してその点におけるすべての関数値の和は 1 ではなく正であることだけ要求される。しかしながら、関数のそのような集合が与えられると、すべての関数の和で各関数を割る(これは定義される、なぜならば任意の点において有限個の項しか持たないから)ことによって強い意味での 1 の分割を得ることができる。

応用

1 の分割は多様体上定義された関数の(ある体積形式に関する)積分を定義するために使うことができる: まず台が多様体のある 1 つの coordinate patch に含まれる関数の積分を定義する; 次に 1 の分割を用いて任意の関数の積分を定義する; 最後に定義は 1 の分割の取り方によらないことを示す。

1 の分割は任意の多様体上にリーマン計量が存在することを示すのに使うことができる。

最急降下法英語版(鞍点法)において積分の漸近展開を構成するために 1 の分割が用いられる(en:Method_of_steepest_descent#The_case_of_multiple_non-degenerate_saddle_pointsも参照)。

リンクウィッツ・ライリーフィルター英語版 は 1 の分割を実用に応用して入力シグナルを高いあるいは低い周波数成分のみ含む 2 つの出力シグナルに分離する。

固定された次数 mバーンスタイン多項式全体は単位区間 [0, 1] に対する 1 の分割である線型独立な m + 1 個の多項式の族である。

関連項目

参考文献

  1. ^ Rudin, Walter (1987). Real and complex analysis (3rd ed. ed.). New York: McGraw-Hill. pp. 40. ISBN 0-07-054234-1 
  2. ^ Aliprantis, Charalambos D.; Border, Kim C. (2007). Infinite dimensional analysis: a hitchhiker's guide (3rd ed. ed.). Berlin: Springer. pp. 716. ISBN 978-3-540-32696-0 

外部リンク


1の分割

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/04/29 06:59 UTC 版)

パラコンパクト空間」の記事における「1の分割」の解説

パラコンパクトハウスドルフ空間の最も重要な性質正規であり任意の開被覆従属な1の分割を持つことである。これは次を意味する: X がある与えられ開被覆を持つパラコンパクトハウスドルフ空間であれば、次を満たす単位区間 [0, 1] に値を持つ X 上の連続関数集まり存在する集まりからのすべての関数 f: X → R に対して被覆のある開集合 U が存在して f の台は U に含まれるすべての点 x ∈ X に対して、x のある近傍 V が存在して集まり関数有限個を除くすべては V において恒等的に 0 であり 0 でない関数の和は V において恒等的に 1 である。 実は、T1 空間ハウスドルフかつパラコンパクトであることと任意の開被覆従属な 1 の分割を持つことは同値である(下記参照)。この性質は(少なくともハウスドルフ場合において)パラコンパクト空間定義するのに使われることがある。 1 の分割は有用である、なぜならばそれによってしばしば局所構造全空間拡張できるからである。例えば、パラコンパクト多様体上の微分形式の積分はまず(多様体ユークリッド空間のように見え積分良く知られている)局所的に定義され、そしてこの定義が 1 の分割を経由して全空間拡張される。

※この「1の分割」の解説は、「パラコンパクト空間」の解説の一部です。
「1の分割」を含む「パラコンパクト空間」の記事については、「パラコンパクト空間」の概要を参照ください。

ウィキペディア小見出し辞書の「1の分割」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「1の分割」の関連用語











1の分割のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



1の分割のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの1の分割 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのパラコンパクト空間 (改訂履歴)、可微分多様体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS