1の冪根
1の冪根(いちのべきこん、英: root of unity)または1の累乗根(いちのるいじょうこん)とは、数学において冪乗して 1 になる(冪単である)数のことである。すなわち、ある自然数 n が存在して
- zn = 1
となる z のことである。通常は複素数の範囲で考えるが、場合によっては p進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。
1 の n乗根の内、m (< n) 乗しても決して 1 にならず、n乗して初めて 1 になるものは原始的 (primitive) であるという。全ての自然数 n に対する 1 の原始n乗根を総称し、1 の原始冪根(いちのげんしべきこん)、または1 の原始累乗根(いちのげんしるいじょうこん)という。
1の原始冪根
1の原始冪根
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/01 22:39 UTC 版)
複素数の範囲では、1 の原始n乗根は n ≥ 3 のとき2つ以上存在する。ド・モアブルの定理より、 ζ n = cos 2 π n + i sin 2 π n {\displaystyle \zeta _{n}=\cos {\frac {2\pi }{n}}+i\sin {\frac {2\pi }{n}}} は 1 の原始n乗根の一つであることが分かる。この時、ζn の共役複素数 ζn も 1 の原始n乗根である。n と互いに素な自然数 m に対して ξnm は 1 の原始n乗根であり、逆に 1 の原始n乗根はこの形に表せる。すなわち、1 の原始n乗根は、オイラーのφ関数を用いて、φ(n) 個だけ存在する。 方程式 xn = 1 を考える。この方程式の解は、ド・モアブルの定理より、 x = cos 2 π k n + i sin 2 π k n ( k = 1 , 2 , ⋯ , n ) {\displaystyle x=\cos {\frac {2\pi k}{n}}+i\sin {\frac {2\pi k}{n}}\quad (k=1,2,\cdots ,n)} であるが、1 の原始n乗根 ξn を一つ選べば、 x = ξ n k ( k = 1 , 2 , ⋯ , n ) {\displaystyle x={\xi _{n}}^{k}\quad (k=1,2,\cdots ,n)} と書くことができる。 また上記のように根を三角関数で表すことは容易であるが、それが根号を用いて表示できること、つまり方程式が代数的にも可解であることはガウスにより証明された。
※この「1の原始冪根」の解説は、「1の冪根」の解説の一部です。
「1の原始冪根」を含む「1の冪根」の記事については、「1の冪根」の概要を参照ください。
- 1の原始冪根のページへのリンク