調和級数とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 高等数学 > 級数 > 調和級数の意味・解説 

調和級数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/22 02:24 UTC 版)

数学における調和級数(ちょうわきゅうすう、: harmonic series)とは発散無限級数

block-stacking problem


有名なものとして「block-stacking problem」がある。これは「まったく同じドミノの集まりが与えられたとき、それをテーブルの縁に積み上げることができるのは明らかだが、それではテーブルのへりを(どの程度)張り出すように積めるか」というものが挙げられる。この直観的でない結果というのは、「ドミノが十分あれば、いくらでも好きなだけ張り出させることができる」である[3][4][5][6]

例えば、「ゴムひもの上の芋虫(“worm on the rubber band”) と呼ばれる逆理がある[4]。内容は「1メートルの(無限に伸びることができる)ゴムひもがある。ひもの一端からもう一方の端に向かって芋虫が毎分1センチの速さでひもの上を這うものとする。ゴムひもは1分ごとに(正確には芋虫が1センチ這った直後に)一様に長さが1メートル引き伸ばされる。すなわち、1分後に芋虫は始点から1センチ這っただけだが、実際は(ゴムひもが引き伸ばされたため)始点から2センチの位置にいることになる。2分後にはそこからさらに1センチしか這っていないにもかかわらず、実際は始点から4.5センチの位置にいる。このようなプロセスを繰り返すとき、芋虫はひもの端まで到達できるだろうか」というものである。答えは、直観に反して「到達できる」である。出発点とT 分後に芋虫がいる位置との距離を LT センチメートルとすると、LT

調和級数の発散をある広義積分との比較によって示すこともできる。これには、調和級数の各項に対応する面積をもつ可算無限個の長方形の集まりを考える。n 番目の項に対応する長方形は、横幅 1、高さ 1/n を持つものとする。これらの長方形の面積の合計は調和級数

交代調和級数の最初の14個の部分和(黒線分)。2 の自然対数(赤線)に近づく様子が見られる。

級数

外部リンク





調和級数と同じ種類の言葉

このページでは「ウィキペディア」から調和級数を検索した結果を表示しています。
Weblioに収録されているすべての辞書から調和級数を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から調和級数 を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「調和級数」の関連用語

調和級数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



調和級数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの調和級数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS