脳磁場信号の基盤
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/04/29 14:41 UTC 版)
同期した神経活動により生じる電流は非常に弱い磁場を誘起し、脳磁図はこの磁場を計測する。しかし、この脳磁場は非常に弱く、大脳皮質 の活動では10 fT (フェムトテスラ)、ヒトのアルファ波で103 fT ほどである。一方、都市部において生じる環境磁場ノイズのオーダーは108 fT にもなる。したがって、生体磁場の計測にあたり、計測したい信号の小ささと、外部ノイズの大きさという2つの大きな問題が生じる。超伝導量子干渉計 (SQUID) という非常に感度の良い計測デバイスの進歩が脳磁場の解析に利用され、この問題に対処するのに用いられている。近年、光ポンピング磁力計でスピン偏極の緩和レートが小さくなる状態(SERF) を利用すれば,センサの感度が subfT/Hz1/2オーダまで到達可能であるという報告がなされ、SERF状態で動作する光ポンピング原子磁気センサに期待が寄せられている。また、測定体積が小さくても十分な感度を保つことが期待でき、多チャンネル化により高い空間分解能を持った磁場計測が可能になると予想され、光ポンピング原子磁気センサはこのSERF条件を利用することで原理的に超伝導量子干渉素子 (SQUID) を凌ぐ測定感度 (〜0.01 fT/Hz1/2) を有し、冷却装置を必要としないことから新たな脳磁図(MEG)用のセンサとして期待されている。 脳磁図と脳電図 (EEG) の元となるシグナルはシナプス伝達の際にニューロンの樹状突起で起きるイオン電荷の流れの、正味の効果による。マクスウェルの方程式に従えば、全ての電場はそれに直交する磁場を生み出す。その磁場を、脳磁図は計測するのである。脳活動によって生じる正味の電流は、ある所定の位置、向き、強さを持ち、空間的広がりの無い電流双極子として考えることが出来る。アンペールの法則から、電流双極子はその双極子のベクトル成分を軸とした磁場を生じさせる。 検出可能な信号を生み出すためには約50,000のニューロンの活動が必要である。また、互いに強め合う磁場を生み出すには電流双極子の向きが揃っていなくてはならないことから、皮質にあって、脳表面に垂直に並ぶ錐体細胞の層が、計測可能な強さの磁場を生み出すこととなる。さらに、皮質の脳溝にあって、層状のニューロンが脳表面に対して平行な向きに並ぶ時のみ、頭外部でも検出可能な磁場が生み出される。研究者たちの手により、脳の奥深くの部分 (例えば非皮質性) の信号を検出するための様々な信号処理の手法が試されてきた。しかし、現時点において臨床的に利用可能な手法は存在しない。 多くの場合、活動電位は検出可能な磁場を生み出すことは出来ない点は注目に値する。それは主に、活動電位によって生じる電流は反対方向に流れるため、磁場が打ち消しあってしまうためである。しかし、末梢神経における活動電位によって生じる磁場は検出可能である。
※この「脳磁場信号の基盤」の解説は、「脳磁図」の解説の一部です。
「脳磁場信号の基盤」を含む「脳磁図」の記事については、「脳磁図」の概要を参照ください。
- 脳磁場信号の基盤のページへのリンク