超伝導量子干渉素子とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > 超伝導量子干渉素子の意味・解説 

ちょうでんどう‐りょうしかんしょうそし〔テウデンダウリヤウシカンセフソシ〕【超伝導量子干渉素子】

読み方:ちょうでんどうりょうしかんしょうそし

スキッドSQUID


超伝導量子干渉計

(超伝導量子干渉素子 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/09 01:44 UTC 版)

超伝導量子干渉計 (superconducting quantum interference device, SQUID) とは、ジョセフソン接合を含む環状超伝導体に基く、極めて弱い磁場の検出に用いられる非常に感度の高い磁気センサの一種である。


  1. ^ 但し、SQUIDは極低温で機能するために厳重な断熱が不可欠なため、10 mm 以上の断熱層を設ける必要があり、空間分解能が下がる
  1. ^ a b Ran, Shannon K’doah (2004) (PDF). Gravity Probe B: Exploring Einstein's Universe with Gyroscopes. NASA. p. 26. http://einstein.stanford.edu/content/education/GP-B_T-Guide4-2008.pdf 
  2. ^ Drung, D.; Abmann, C.; Beyer, J.; Kirste, A.; Peters, M.; Ruede, F.; Schurig, T. (6 2007). “Highly Sensitive and Easy-to-Use SQUID Sensors”. IEEE Transactions on Applied Superconductivity 17 (2): 699–704. Bibcode2007ITAS...17..699D. doi:10.1109/TASC.2007.897403. ISSN 1051-8223. 
  3. ^ R. C. Jaklevic; J. Lambe; A. H. Silver; J. E. Mercereau (1964). “Quantum Interference Effects in Josephson Tunneling”. Phys. Rev. Letters 12 (7): 159–160. Bibcode1964PhRvL..12..159J. doi:10.1103/PhysRevLett.12.159. 
  4. ^ Anderson, P.; Rowell, J. (1963). “Probable Observation of the Josephson Superconducting Tunneling Effect”. Physical Review Letters 10 (6): 230–232. Bibcode1963PhRvL..10..230A. doi:10.1103/PhysRevLett.10.230. 
  5. ^ a b E. du Trémolet de Lacheisserie, D. Gignoux, and M. Schlenker (editors) (2005). Magnetism: Materials and Applications. 2. Springer 
  6. ^ a b J. Clarke and A. I. Braginski (Eds.) (2004). The SQUID handbook. 1. Wiley-Vch 
  7. ^ A.TH.A.M. de Waele & R. de Bruyn Ouboter (1969). “Quantum-interference phenomena in point contacts between two superconductors”. Physica 41 (2): 225–254. Bibcode1969Phy....41..225D. doi:10.1016/0031-8914(69)90116-5. 
  8. ^ Romani, G. L.; Williamson, S. J.; Kaufman, L. (1982). “Biomagnetic instrumentation”. Review of Scientific Instruments 53 (12): 1815–1845. Bibcode1982RScI...53.1815R. doi:10.1063/1.1136907. PMID 6760371. 
  9. ^ Sternickel, K.; Braginski, A. I. (2006). “Biomagnetism using SQUIDs: Status and perspectives”. Superconductor Science and Technology 19 (3): S160. Bibcode2006SuScT..19S.160S. doi:10.1088/0953-2048/19/3/024. 
  10. ^ S.N. Erné; H.-D. Hahlbohm; H. Lübbig (1976). “Theory of the RF biased Superconducting Quantum Interference Device for the non-hysteretic regime”. J. Appl. Phys. 47 (12): 5440–5442. Bibcode1976JAP....47.5440E. doi:10.1063/1.322574. 
  11. ^ Cleuziou, J.-P.; Wernsdorfer, W. (2006). “Carbon nanotube superconducting quantum interference device”. Nature Nanotechnology 1 (October): 53–9. Bibcode2006NatNa...1...53C. doi:10.1038/nnano.2006.54. PMID 18654142. 
  12. ^ Aprili, Marco (2006). “The nanoSQUID makes its debut”. Nature Nanotechnology 1 (October). 
  13. ^ Kleiner, R.; Koelle, D.; Ludwig, F.; Clarke, J. (2004). “Superconducting quantum interference devices: State of the art and applications”. Proceedings of the IEEE 92 (10): 1534–1548. doi:10.1109/JPROC.2004.833655. 
  14. ^ microSQUID microscopy at Institut Néel (Grenoble, FRANCE)
  15. ^ Clarke & Braginski 2006, pp. 56–81, Chapter 8.3: Nuclear Magnetic and Quadrupole Resonance and Magnetic Resonance Imaging.
  16. ^ Clarke & Braginski 2006, pp. 548–554, Chapter 15.2: Superconducting Transducer for Gravitational-Wave Detectors.
  17. ^ “First Observation of the Dynamical Casimir Effect”. Technology Review. http://www.technologyreview.com/blog/arxiv/26813/ 
  18. ^ Wilson, C. M. (2011). “Observation of the Dynamical Casimir Effect in a Superconducting Circuit”. Nature 479 (7373): 376–379. arXiv:1105.4714. Bibcode2011Natur.479..376W. doi:10.1038/nature10561. PMID 22094697. 
  19. ^ V Bouchiat; D Vion; P Joyez; D Esteve; M H Devoret (1998). “Quantum coherence with a single Cooper pair” (PDF). Physica Scripta T76: 165-170. doi:10.1238/Physica.Topical.076a00165. http://qulab.eng.yale.edu/documents/reprints/pscripta_SSbox.pdf. 
  20. ^ Ouellette, Jennifer. “SQUID Sensors Penetrate New Markets (PDF)”. The Industrial Physicist. p. 22. 2008年5月18日時点のオリジナルよりアーカイブ。2016年9月19日閲覧。


「超伝導量子干渉計」の続きの解説一覧

超伝導量子干渉素子(SQUID)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/10/17 00:47 UTC 版)

量子センシング」の記事における「超伝導量子干渉素子(SQUID)」の解説

詳細は「超伝導量子干渉計」を参照 ジョセフソン接合を含む環状超伝導体用いたセンサーであり、超伝導材料用いるため、センサー極低温にする必要がある大学病院などで、脳磁計として実際に使用されている。

※この「超伝導量子干渉素子(SQUID)」の解説は、「量子センシング」の解説の一部です。
「超伝導量子干渉素子(SQUID)」を含む「量子センシング」の記事については、「量子センシング」の概要を参照ください。

ウィキペディア小見出し辞書の「超伝導量子干渉素子」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「超伝導量子干渉素子」の関連用語

超伝導量子干渉素子のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



超伝導量子干渉素子のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの超伝導量子干渉計 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの量子センシング (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS