背景時空と真空状態
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/11 15:23 UTC 版)
弦は空間的広がりを持つため、空間の形によって運動の形態が変わりやすいという特徴がある。たとえばカルツァ=クライン理論のような空間座標の巻き込みコンパクト化を、特に小半径の場合で考えると、粒子の場合は波長が短くなる事によってそちら側への励起が単純に起こりづらくなるが、弦の場合は「巻き付き」という、半径が小さいほど励起しやすいモードが存在する。結果的に、半径がRの時と1/Rの時の物理的自由度の数が等しくなる(T双対性)。 これに加え、重力子の見かけ上の運動方程式はほぼアインシュタイン方程式になり、一般相対性理論が与える重力場の解が弦理論の古典解となる。 特に重要なのはブラックブレーンと呼ばれる「質量を持った膜」の解である。一般相対論とは独立に、弦理論からT双対性を用いて、通常の空間方向を体積0の空間と対応させる事によって得られるDブレーンは、ブラックブレーンの弦理論による説明であるとされる。弦理論からの解釈によれば、Dブレーンは開弦の端点が「繋がる」事ができ、開弦の運動がその空間に制限される。N枚のDブレーンが重なっていた場合、開弦から得られるゲージ場はどのブレーンに端点を持つかによってN2の種類を持ち、U(N)の非可換ゲージ理論を再現する。T双対性との兼ね合いから、全く自由に見える開弦も、全空間を満たすD25ブレーンに繋がる事を要請される。 ディラトン場は結合定数の強さを与える。 弦理論は場の種類はおろか、調節可能なパラメータすらない「唯一の理論」である。しかしこれら空間のコンパクト化やブレーンの配位などを用いて、一つの理論に対して無数ともいえる「真空状態」が導かれ、弦はそれぞれの真空で異なった振る舞いをする。ただし後述するが、ボソン弦理論では全てのDブレーンは安定した存在ではない。ブレーン配位が威力を発揮するのは超弦理論においてである。どのような理論が得られるか、特に我々の4次元時空に相当するものが得られるのか、については、弦理論の主要な関心事である。
※この「背景時空と真空状態」の解説は、「弦理論」の解説の一部です。
「背景時空と真空状態」を含む「弦理論」の記事については、「弦理論」の概要を参照ください。
- 背景時空と真空状態のページへのリンク