F
=
d
d
t
(
m
v
)
{\displaystyle {\boldsymbol {F}}={\frac {\mathrm {d} }{\mathrm {d} t}}(m{\boldsymbol {v}})}
Newton, Isaac (1729) (英語), The Mathematical Principles of Natural Philosophy , translated by Andrew Motte (English ed.), ウィキソース より閲覧。
松田, 哲『力学』丸善〈パリティ物理学コース〉、1993年。
ランダウ, L.D. 、リフシッツ, E.M. 著、水戸巌 ・恒藤敏彦 ・廣重徹 訳『力学・場の理論 : ランダウ=リフシッツ物理学小教程』筑摩書房 〈ちくま学芸文庫 〉、2008年。ISBN 978-4-480-09111-6 。
須藤, 靖『解析力学・量子論』東京大学出版会、2008年。ISBN 978-4-13-062610-1 。
砂川, 重信『電磁気学』(新装版)岩波書店〈物理テキストシリーズ 4〉、1987年。ISBN 4-00-007744-9 。
田崎, 晴明『熱力学 現代的な視点から』(初版)培風館、2000年4月12日。ISBN 978-4-563-02432-1 。
関連項目
ウィキメディア・コモンズには、
運動量 に関連するカテゴリがあります。
線形・直線運動の量
角度・回転運動の量
次元
—
L
L2
次元
—
—
—
T
時間 : t s
absement : A m s(英語版 )
T
時間 : t s
—
距離 : d , 位置 : r , s , x , 変位 m
面積 : A m2
—
角度 : θ , 角変位(英語版 ) : θ rad
立体角 : Ω rad2 , sr
T−1
周波数 : f s−1 , Hz
速さ (速度の大きさ): v , 速度 : v m s−1
動粘度 : ν ,比角運動量(英語版 ) : h m2 s−1
T−1
周波数 : f s−1 , Hz
角速度(の大きさ): ω , 角速度 : ω rad s−1
T−2
加速度 : a m s−2
T−2
角加速度 : α rad s−2
T−3
躍度 : j m s−3
T−3
角躍度 : ζ rad s−3
M
質量 : m kg
M L2
慣性モーメント : I kg m2
M T−1
運動量 : p , 力積 : J kg m s−1 , N s(英語版 )
作用 : 𝒮 , actergy : ℵ kg m2 s−1 , J s(英語版 )
M L2 T−1
角運動量 : L , 角力積: ΔL kg m2 s−1
作用: 𝒮 , actergy: ℵ kg m2 s−1 , J s
M T−2
力 : F , 重さ : F g kg m s−2 , N
エネルギー : E , 仕事 : W kg m2 s−2 , J
M L2 T−2
トルク : τ , 力のモーメント : M kg m2 s−2 , N m
エネルギー: E , 仕事: W kg m2 s−2 , J
M T−3
yank : Y kg m s−3 , N s−1
仕事率 : P kg m2 s−3 , W
M L2 T−3
rotatum : P kg m2 s−3 , N m s−1
仕事率: P kg m2 s−3 , W
線形運動量のページの著作権
Weblio 辞書
情報提供元は
参加元一覧
にて確認できます。
All text is available under the terms of the GNU Free Documentation License . この記事は、ウィキペディアの運動量 (改訂履歴) の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Weblio辞書 に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。