太陽系での惑星移動
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/02 05:55 UTC 版)
詳細は「ニースモデル」を参照 太陽系の外惑星の移動は、太陽系の最も外側の領域にある天体の軌道の特性のいくつかを説明するために提案されたシナリオである。海王星以遠には太陽系外縁天体が存在し、エッジワース・カイパーベルト天体や散乱円盤天体、オールトの雲と続いている。これらの3種類の小さい氷天体のまばらな集団は、観測されている彗星の大部分の起源であると考えられている。かつて存在した円盤は惑星へと集積するのに十分な質量密度を持っていなかったため、太陽から遠く離れたこれらの領域では天体の集積は遅く、原始太陽系星雲が散逸する前に惑星を形成することは出来なかったと考えられる。エッジワース・カイパーベルトは太陽から 30〜55 天文単位 (au) の範囲にまたがっている一方、散乱円盤はさらに遠方の 100 au を超えて広がり、オールトの雲は 50,000 au 程度から始まっているとされる。 太陽系形成論の仮説の一つであるニースモデルでは、エッジワース・カイパーベルトはかつては数密度が大きく、太陽に近い位置にあったとしている。このシナリオではカイパーベルトは数百万個もの微惑星を持ち、外縁がおよそ 30 au と現在の海王星の軌道付近にあったと仮定している。太陽系が形成された後、4つの巨大惑星の軌道は残存している大量の微惑星との相互作用に影響を受けてゆっくりと変化を続けた。5〜6億年経過した後 (今からおよそ40億年前)、木星と土星の軌道はお互いに離れながら 2:1 の軌道共鳴の位置を通過し、木星が太陽を2周する間に土星が1周するという状態になった。この共鳴の通過によって木星と土星の軌道離心率は上昇し、天王星と海王星の軌道は不安定化された。 その後の惑星同士の遭遇によって、かつて天王星より内側にあったと思われる海王星は遠方へ飛ばされ、高密度の微惑星円盤へと突入した。巨大惑星は小さい氷天体の大部分を太陽系の内側へと散乱する一方で、それら自身は外側へと移動した。これらの微惑星は同様に別の惑星に遭遇してさらに散乱され、微惑星自身は内側へと移動する一方で惑星の軌道を外側へと移動させた。この過程は微惑星が木星と遭遇するまで継続した。木星は重力が強く、微惑星を非常に離心率の大きい楕円軌道へと変化させたり、あるいは太陽系から弾き出したりした。この過程で木星の軌道はわずかに内側へ移動した。この微惑星の散乱シナリオは、現在の太陽系外縁天体の総質量が小さいことを説明できる。 外惑星とは対照的に、内惑星は太陽系の年齢にわたって大きな惑星移動を経験したとは考えられていない。これは、内惑星の軌道は後期重爆撃期を経た後も安定して存在しているからである。
※この「太陽系での惑星移動」の解説は、「惑星移動」の解説の一部です。
「太陽系での惑星移動」を含む「惑星移動」の記事については、「惑星移動」の概要を参照ください。
- 太陽系での惑星移動のページへのリンク