大規模構造の形成・進化
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/18 05:43 UTC 版)
「現代宇宙論」の記事における「大規模構造の形成・進化」の解説
詳細は「宇宙の大規模構造」を参照 宇宙で最も大きな、また最も初期に存在した構造(クエーサー、銀河、銀河団、超銀河団)の形成と進化について理解する研究は、宇宙論の主要な目的の一つである。現在、宇宙論に関わる研究者は階層的構造形成モデルを標準モデルと考え研究を行なっている。これは宇宙に存在する構造はより小さな天体から作られ、そこから小質量の構造が衝突・合体を繰り返すことで、銀河団・超銀河団のような大質量の構造が形成されたとするモデルである。この様に小質量の構造から構造形成が進むシナリオはボトムアップ・シナリオと呼ばれている。超銀河団のような最も大きな構造は、ビリアル平衡に達しておらず、現在でも進化していると考えられている。宇宙の構造を研究する最も単純な方法は、目に見える銀河をサーベイして宇宙における銀河の3次元分布を構築し、物質分布のパワースペクトルを求めることである。このようなアプローチの実例として、スローン・デジタル・スカイサーベイや2dF銀河赤方偏移サーベイなどがある。 このような構造形成を理解するための重要な道具として計算機によるシミュレーション(N体シミュレーション)がある。宇宙論研究者は数値シミュレーションを用いて、宇宙で物質が重力で凝集し、フィラメントや超銀河団、ボイドといった構造を作る過程を研究している。ほとんどのシミュレーションではバリオンでない冷たいダークマターのみを用いている。この仮定は宇宙の最も大きなスケールでの振る舞いを理解するためには十分なものである。なぜなら我々の宇宙には目に見えるバリオン物質よりもはるかに多くのダークマターが存在するためである。現在ではバリオンも計算に含み、個々の銀河の形成を研究するより高度なシミュレーションも始まっている。宇宙論研究者はこのようなシミュレーションによって、計算結果が銀河のサーベイ観測と一致するか、また不一致がある場合にはその原因を理解できるかどうかを調べている。 またこれ以外にも、遠方の宇宙の物質分布を測定したり宇宙の再電離の時期を検出するための補完的手法がある。例として以下のようなものがある。 ライマンαの森と呼ばれる、遠方のクエーサーの光に含まれる銀河間ガス雲の吸収線を測定することで、初期宇宙の中性水素原子の分布を測定することができる。 中性水素原子の21cm線の吸収線の測定も宇宙論の高精度のテストとして用いることができる。 ダークマターの重力レンズ効果によって遠方天体の画像が歪む弱い重力レンズ (weak lensing) も研究に用いることができる。 このような手法は、最初のクエーサーがいつ生まれたかといった問題を解く手掛かりとなる可能性がある。
※この「大規模構造の形成・進化」の解説は、「現代宇宙論」の解説の一部です。
「大規模構造の形成・進化」を含む「現代宇宙論」の記事については、「現代宇宙論」の概要を参照ください。
- 大規模構造の形成・進化のページへのリンク