こていしょうすうてん‐すう〔コテイセウスウテン‐〕【固定小数点数】
固定小数点数
固定小数点数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/08 16:08 UTC 版)
固定小数点数(こていしょうすうてんすう、英: fixed-point number)は、小数点が置かれる桁を固定して表された数のことで、コンピュータ上で小数を表現する方法として使用される形式のひとつである。ある桁数のうちのある場所に小数点が固定されているもの(固定小数点)として扱う方式であるため、表現される仮数部に対して小数点の位置が移動する浮動小数点数の対義語として用いられる。すなわち、「固定-小数点数」ではなく「固定小数点-数」である。
- ^ ヘンリー・S.ウォーレン、ジュニア 著、滝沢徹、玉井浩、鈴木貢、赤池英夫、葛毅、藤波順久 訳「第10章 整数定数による除算」『ハッカーのたのしみ―本物のプログラマはいかにして問題を解くか』エスアイビー・アクセス、2004年。ISBN 4-434-04668-3。
- ^ 通貨型 PostgreSQL 9.2.4文書(2014年2月3日閲覧)。
- 1 固定小数点数とは
- 2 固定小数点数の概要
- 3 固定小数点数の精度
- 4 関連項目
固定小数点数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/18 17:58 UTC 版)
「コンピュータの数値表現」の記事における「固定小数点数」の解説
詳細は「固定小数点数」を参照 固定小数点数形式は、金銭勘定など浮動小数方式と相性が悪い場合、すなわちビジネスにおける計算(表計算ソフトやCOBOLなど)でよく使われる。「浮動小数点数の精度では十分ではない場合に採用される」というのは誤解である。単精度の場合に足りないようであれば、それは同じ長さの固定小数方式であっても足りてない。 整数部と小数部のビット数は、必要とされる精度や範囲に十分なように選ばれる。例えば、32ビット形式では、整数部に16ビット、小数部に16ビットといったように設定される。 桁位置の重み付けは、整数部と小数部で連続的となる。例えば整数部が、8の位、4の位、2の位、1の位となっている場合、小数部は0.5の位、0.25の位、0.125の位と続く。 例: 整数ビット群 小数ビット群 0.5 = 1/2 = 00000000 00000000.10000000 00000000 1.25 = 5/4 = 00000000 00000001.01000000 00000000 7.375 = 21/8 = 00000000 00000111.01100000 00000000 ただし、この形式では二進では表せない数が出てくる。例えば、1/5(十進では 0.2)は正確に表すことはできず、最も近い値は以下のようになる。 13107/65536 = 00000000 00000000.00110011 00110011 = 0.1999969... 十進の場合 13108/65536 = 00000000 00000000.00110011 00110100 = 0.2000122... 十進の場合 これは、桁を増やしても正確に表すことはできない。1/3 という数値を考えてみよう。これを十進の小数で表すと 0.333333... となって永遠に続く。これを適当な桁で止めると、その数値表現は 1/3 を正確に表すことはできていない。 つまり、十進で有限小数で表せる数が二進で有限小数になるとは限らない。これを回避する方法として、小数ではなく分子と分母を別々に格納した一種の分数として内部で保持する方式がある。しかし、平方根を求めるなどといった演算はできない。また、分数同士の加減算では通分によって分母が表現できないほど大きな値になる可能性があるため、「有理数型」というデータ型として、分母分子ともに多倍長整数で表すことが普通である。
※この「固定小数点数」の解説は、「コンピュータの数値表現」の解説の一部です。
「固定小数点数」を含む「コンピュータの数値表現」の記事については、「コンピュータの数値表現」の概要を参照ください。
固有名詞の分類
- 固定小数点数のページへのリンク