しょう‐すう〔セウ‐〕【小数】
小数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/30 08:04 UTC 版)
概要
0 超過 1 未満の数を、分数を使わずに表現する方法の一つ。1 を桁の基数 N で P 回割った数の桁を、小数第 P 位として表現する。
例えば、十進法で 1425 の百分の一に相当する数は、小数と小数点(ピリオドまたはコンマ)を用いて、
14 | . | 25 |
整数部 | 小数点 | 小数部 |
または、
14 | , | 25 |
整数部 | 小数点 | 小数部 |
のように表現する(なお、日本では小数点としてピリオドを用いることがほとんどである)。小数点より左を整数部(分)と呼んで、右から一の位、十の位の数を記述する。小数点より右は小数部(分)と呼んで、1 より小さい位として、左から十分の一の位、百分の一の位の数を順に記述する。上に挙げた数の場合には、十の位は「1」、一の位は「4」、十分の一の位は「2」、百分の一の位は「5」となる。より小さい数を表現する場合には、この後に「千分の一の位」や「一万分の一の位」と順に位を増やすことで対応することができる。
小数部分の位は、小数第一位は「十分の一の位」、小数第二位は「百分の一の位」となるが、単に「小数第一位」「小数第二位」というように序数で呼ぶ例も多い。「小数点以下第 P 位」と呼ぶこともあるが、この場合の「以下」は小数点自体は含まずに数えることになっているので、「小数第 P 位」と同じである。10進数以外の他の進数の表記においても同様である。
使用例
以下に使用例を挙げる。小数は長さや質量といった細分できる量を表現したり、割合や平均を表現するのにも用いる。
- 細分できる量
- 五円硬貨の厚さは 1.5 ミリメートル、質量は 3.75 グラム。
- 1986年のランディ・バースの打率は 0.389。
- 国の人口密度順リストによると、グリーンランドの人口密度は 1 平方キロメートルあたり 0.03 人である。
- 円周率は円周の長さの直径に対する比率であり、3.14159265…である。
小数部の区切り
国際単位系(SI)の規定では、桁の数が多い場合の読取りを容易にするため、小数部の桁数が4以上の場合は、3桁ごとに空白(通常は、半スペース(en:thin space))で区切ることになっている[1][2]。ただし、小数部の桁数が4の場合は、3桁と1桁とに分けないのが普通である。物理学をはじめとする理学や工学の分野では、この国際単位系(SI)の規定に従った記法が使われる[3]。
ただし、設計図、財務諸表、コンピュータが読み取るスクリプト(script)などの特定の専門的分野では、上記のやりかたは必ずしも使われていない[1][4]。
以下は、NIST SP811([1])における例である[5]。
- 76 483 522 とする(76,483,522 としない)
- 43 279.168 29 とする(43,279.168 29 としない)
- 8012 又は 8 012 とする(8,012 としない)
- 0.491 722 3 の方が 0.4917223 より望ましい
- 0.5947 又は 0.594 7 とする(0.59 47 としない)
- 8012.5947 又は 8 012.594 7 とする(8 012.5947 や 8012.594 7 としない)
小数の分類
有限小数と無限小数
有限桁の数字で表せる小数を有限小数と呼ぶ。一般には分数が有限小数になる条件は、記数法の底(基数)と分母の素因数との関係で記述できる。既約分数 a/b が k 進法で有限小数となるための必要充分条件は rad(b)∣rad(k) となる。即ち b の素因数が全て k の素因数にもなっていることである。
- 例.10進数においては基数10が 2 × 5 で表せることより除数 b が 2i × 5j (i , j ≧ 0) の数においては有限小数になる。他の進数においてもその進数の基数の数により有限小数になる数が定まる。
一般の実数は有限小数として表せない。小数部の桁数が有限にならないものを無限小数と呼ぶ。例えば円周率は通常の位取り記数法において有限小数として表せず、無限小数として表される数の一つである。
循環小数と非循環小数
1/3 = 0.3333… や 1/7 = 0.142857142857…、あるいは 1/2 = 0.5000… など、小数部に有限の長さの数列が繰り返し連続して現れるものを循環小数と呼ぶ。また繰り返し現れる数列のうち最も短いものを循環節と呼ぶ。
循環小数として表せる数は有理数に限られる。
循環小数は循環節と有限小数の組として表せる。様々な記法があるが、一般的に用いられる記法の一つとして、下記のように循環節の始点と終点をドットで示す方法がある:
- 1/7 = 0.4285
- 124/990 = 0.1252525… = 0.1
循環節の長さが1桁の場合、ドットを1つだけ打つ:
- 0.333… = 0.
- 0.1444… = 0.1
必要ならば、有限小数として表せる数は循環小数としても表せる。例えば、1/8 = 0.125 = 0.125000… = 0.124999… のように、0 や 9 を無限に繰り返しているといえるからである。
無限小数のうち循環小数として表せないものを非循環小数と呼ぶ。小数展開が循環小数となる数は有理数であるから、非循環小数となる数は無理数である。非循環小数は簡単に作ることができ、例えば
小数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/23 00:17 UTC 版)
『孫子算経』には小数を用いた計量法が記載されている。基本の長さ単位は尺であり、それより小さい単位が以下のように続く。 1尺 = 10寸、1寸 = 10分、1分 = 10厘、1厘 = 10毛、1毛 = 10糸、1糸 = 10忽 「1尺2寸3分4厘5毛6糸7忽」の長さを算盤上に表すと以下のようになる。 ここでは の位が単位長さである尺を表している。 南宋期の数学者秦九韶は長さの計量以外にも小数を適用した。秦の著書『数書九章』では、「1.1446154日」が 日 と表されている。単位の位は下に「日」の字をつけることで示される。
※この「小数」の解説は、「籌算」の解説の一部です。
「小数」を含む「籌算」の記事については、「籌算」の概要を参照ください。
小数
「小数」の例文・使い方・用例・文例
- 小数第4位まで計算する
- 小数点
- 循環小数
- 小数点を入力する必要はない。
- 小数点第3位以下は切り捨て表示。
- 小数点以下をすっきり出来ないのか?
- このデータは小数点第二位で四捨五入されている。
- 【数学】 循環小数.
- 小数点.
- 循環小数.
- 無限小数.
- その 3 と 5 の間に小数点を入れなさい.
- 小数点以下 3 桁まで答えよ.
- 答えは小数点以下 3 位までにすること.
- 小数点の上は, 下から順に一, 十, 百, 千…の位です.
- 3.76 を小数点以下 2 桁で四捨五入すると 3.8 になる.
- 小数派の意見をもっと尊重すべきです.
- 判決には小数意見が併記されていた.
小数と同じ種類の言葉
- >> 「小数」を含む用語の索引
- 小数のページへのリンク