和算家として
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/22 05:42 UTC 版)
父は備中(現・岡山県)松山藩士の村上佐助義寄といい、主家断絶後に父子ともに浪人となり、姓を久留島と改める。江戸で吉田光由著「塵劫記」を読んで独学で数学を学ぶ。数学指南をしていた際に中根元圭の道場破りにあったが、中根は喜内の非凡の才を見出し後援を惜しまなかった。享保15(1730)年、陸奥国磐城平藩主内藤政樹に仕え、延享4(1747年)に内藤氏が日向国延岡藩に移封された折には同地に6年間ほど赴任した。 後世、関孝和・建部賢弘と共に三大和算家と称されている。レオンハルト・オイラーより早くオイラーのφ関数に言及していたとも言われる。また、ラプラスより早く余因子展開(ラプラス展開)を発見していたとも言われる。 極値問題を級数展開の視点から考察し、ピエール・ド・フェルマーの方法に近いものを得た(『久氏弧背術』)。そのほか、整数方程式、無限級数、円理の研究で有名である。行列式の展開では関孝和の『解伏題之法』の誤りを訂正して、『大成算経』(関孝和・建部賢弘・建部賢明)や『算法発揮』(井関知辰)とは異なる、正しい展開を導いている。また、立方陣はフェルマーが1640年に最初に作ったが、4本の立体対角線の成立するものを作ったのは喜内が初めて。 天衣無縫で酒を好み、自らの研究成果に無頓着で、研究成果を書き記した紙で行李の裏を張ってしまったという。和算家としての業績については、知人や山路主住のような弟子により『久氏弧背術』『久氏三百解』『久氏遺稿』などの書物にまとめられた。また同僚で親友の松永良弼著『方円算経』に多く引用されている。
※この「和算家として」の解説は、「久留島喜内」の解説の一部です。
「和算家として」を含む「久留島喜内」の記事については、「久留島喜内」の概要を参照ください。
- 和算家としてのページへのリンク