三相電動機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/16 15:56 UTC 版)
誘導電動機、同期電動機ともに、形成される磁界は電動機の固定子の電源交流に同期して回転している。同期電動機の回転子は固定子磁界と同じ速度で回転するが、誘導電動機の回転子は固定子磁界よりも(すべりによって)少し遅い速度で回転する。誘導電動機の固定子の磁界は、回転子に対して相対的に変化・回転していることになる。 誘導モータのロータ(実質的にはモータの2次巻線)が外部インピーダンスによって短絡または閉成されると、ロータに反対の電流が誘導される。回転する磁束は、変圧器の2次巻線に誘導される電流と同様に、ロータの巻線に電流を誘導し、これがロータに磁界を発生させ、ステータの磁界と反応する。生成される磁場の方向はレンツの法則に基づき、ローター巻線を流れる電流の変化に逆向きになる。ロータ巻線の誘導電流の原因は回転するステータの磁界であるため、ロータ巻線電流の変化に対抗するために、ロータは回転するステータ磁界の方向に回転を開始する。誘導されたローター電流とトルクの大きさが、ローターの回転にかかる機械的負荷と釣り合うまでローターは加速する。 誘導モーターは、同期機や直流機のように個別に励磁したり、永久磁石モーターのように自己消磁したりするのではなく、誘導によってのみ生み出される点が特徴的である。 すべり 同期速度で回転するとローターの誘導電流が発生しないため、誘導モーターは常に同期速度よりもわずかに遅い速度で動作する。実際の速度と同期速度の差を「すべり」と言うが、標準的なデザインBのトルク曲線を持つ誘導モーターでは、約0.5%から5.0%の範囲で変化する。 回転子電流が誘導されるためには、物理的な回転子の速度が固定子の回転磁界の速度よりも低くなければならず、そうでなければ磁界は回転子の導体に対して移動せず、電流は誘導されない。ロータの速度が同期速度以下になると、ロータ内の磁界の回転速度が上昇し、巻線に多くの電流が誘導され、より大きなトルクが発生する。このとき、ローターに誘起される磁界の回転速度とステーターの回転磁界の回転速度の比を「スリップ」と呼ぶ。負荷がかかると、回転数が下がり、スリップが大きくなって、負荷を回すのに十分なトルクが発生する。このため、誘導モーターは「非同期モーター」とも呼ばれる。 発電機としての利用 誘導モーターは、誘導発電機として使用することもできるし、巻き戻して直線運動を直接発生させることができるリニア誘導モーターにすることもできる。誘導モーターの発電モードは、残留磁化のみで始まるローターを励磁する必要があるため複雑である。この残留磁化は、負荷時にモーターを自励するのに十分な場合がある。そのため、モータを停止させて一時的に商用電源に接続するか、残留磁化によって最初に充電されるコンデンサを追加して、運転中に必要な無効電力を供給する必要がある。同様に、誘導電動機と力率補償用の同期電動機を並列にして運転する場合も同様である。系統に並列した発電機モードの特徴は、駆動モードに比べてローターの回転数が高いことである。誘導電動機発電機のもう一つの欠点は、大きな磁化電流I0=(20-35)%を消費することです。
※この「三相電動機」の解説は、「誘導電動機」の解説の一部です。
「三相電動機」を含む「誘導電動機」の記事については、「誘導電動機」の概要を参照ください。
- 三相電動機のページへのリンク