サイリスタによる連続位相制御
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 14:44 UTC 版)
「電気車の速度制御」の記事における「サイリスタによる連続位相制御」の解説
サイリスタ連続位相制御(4分割、混合ブリッジ)の回路(上)と動作(下)。サイリスタT1からT4まで順に位相制御し、電圧を連続制御する。 JR九州783系電車のサイリスタ連続位相制御(純ブリッジ)回路。界磁制御回路付き。 サイリスタの技術開発によって小型軽量な半導体素子による連続電圧制御が可能となると、さらに考え方を一歩進めて、タップ切換器を敢えてなくしてしまうことが考えられた。タップ切換は機械的なスイッチによって行われるが、これをサイリスタに置き換えて完全な無接点化を実現し、機器構成の簡素化・軽量化や整備性の向上を図るものである。この方式を一般にサイリスタ連続位相制御、あるいは単にサイリスタ制御と呼ぶ。 右図はサイリスタ連続位相制御の構成を示したものである。変圧器の2次巻線を分割してそれぞれにサイリスタを配置し、ダイオードブリッジを介して接続するダイオードブリッジに代え、サイリスタを順に位相制御すれば、右図下段のように出力電圧を連続的に変化させることができる。本方式において、サイリスタは分割された2次側出力の位相制御を行うとともに、タップスイッチの役目も兼ねており、故障の原因となりやすい機械的なスイッチをまったく用いないことが特長である。図は4分割の事例を示したが、容量に応じて6分割としたり、出力の小さい電車では2分割の例もある。 また、サイリスタを用いた交流電気車は制御回路を逆にして、比較的簡単に電力回生ブレーキが使用できる。整流子電動機を直流発電機として用い、サイリスタブリッジでインバータ回路を構成して、得られた交流電力を架線に戻す構造である。回生ブレーキを使用する構成の場合、主回路とは別に界磁用の位相制御回路を組み、分巻電動機を用いて界磁を他励とすることがある。電機子電流とは別に、界磁を連続制御することによって、安定した回生ブレーキや勾配抑速ブレーキにおける定速制御を実現している。 サイリスタ制御は優れた特性を持つ一方、位相制御は滑らかな正弦波(サインカーブ)を途中でカットする方法であり、出力電圧が不連続で乱れた状態になる。これによって交流電源の周波数とは異なる高調波を生じ、変電所や信号設備などの地上設備に有害な誘導障害を引き起こすことがある。位相制御を行う無電弧タップ切換も同様であるが、タップ段数に比べてサイリスタ制御の2次巻線分割数は少なく、波形の乱れが大きい後者の問題はとりわけ顕著である。これを防止するため、車両や地上設備にフィルタを設けるなどの処置を必要とする。 またブリッジ(整流回路)にはサイリスタとダイオードで構成されたサイリスタ・ダイオード混合ブリッジと、ブリッジがすべてサイリスタで構成されたサイリスタ純ブリッジとがあり、後者は位相制御と整流をまとめて行う方式であり、純サイリスタ制御とも呼ばれる。
※この「サイリスタによる連続位相制御」の解説は、「電気車の速度制御」の解説の一部です。
「サイリスタによる連続位相制御」を含む「電気車の速度制御」の記事については、「電気車の速度制御」の概要を参照ください。
- サイリスタによる連続位相制御のページへのリンク