この算法についての解析的アプローチ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/11/11 16:19 UTC 版)
「自己組織化写像」の記事における「この算法についての解析的アプローチ」の解説
SOMのアルゴリズムにはどんな次元の特徴ベクトルでも入力できるが、多くの応用では、入力の次元は高い。出力されるマップは1次元や2次元など、入力と異なる次元でも構わない(「近傍」が定義できればよい(→位相幾何学))。しかしポピュラーなのは2次元もしくは3次元のマップである。なぜなら、SOMは次元の拡大でなく、主に次元の削減に用いられるからである。 アルゴリズムはニューラルネットの用語を用いることで容易に記述できる。各々のニューロンは出力のマップ上にそれぞれ固有の「物理的な」位置を持っている。入力に対して、一番近いウェイトベクトルを持っていたニューロンを「勝者」と呼び、勝者の重みベクトルはより入力ベクトルに近くなるように修正される。この「勝者が全部とる (winner-take-all, WTA)」プロセスは競合学習と呼ばれる。 それぞれのニューロンは近傍を持っている。あるニューロンが勝者となった場合、その近傍のニューロンもまた重みベクトルを修正される。このプロセスを、全てのデータについて、何度も(通常、たくさん)繰り返す。 このネットワークは最終的には、入力データセット中のグループまたはパターンを出力ノードに関連付ける結果となる。それら関連づけられたニューロンは入力パターンの名前で呼んでもよいことになる(色のベクトルを学習したなら色ニューロンのように)。 他の多くのニューラルネット同様、SOMにも2つのフェーズがある。 学習プロセスにおいては、写像が構築される。ニューラルネットは競合学習を用いて自己組織化する。ネットワークは多くの入力を必要とする。次のフェーズで出現しそうな入力ベクトルをあらん限り食わせるといい(あれば、だが)。さもなければ、入力ベクトルを何度も繰り返し与える。 写像プロセスにおいては、新しい入力ベクトルは速やかにマップ上の位置が与えられ、自動的に分類される。ただ一つの勝者ニューロンが存在する。このニューロンは重みベクトルが入力ベクトルに最も近いものであり、各ニューロンの重みベクトルと入力ベクトルとのユークリッド距離を計算することで簡単に決定できる。 generative topographic map (GTM) はSOMの新しいバージョンの一つである。GTMは1996年にBishop, Svensen, Williamsの論文中で初めて発表された。GTMは確率モデルであり、おそらく収束する。また、近傍半径の収縮や学習係数の減少を必要としない。 GTMは生成モデルである。入力データを「まず低次元空間側で確率的に点を選び、それを観測された高次元入力データの空間上の点に滑らかな関数で写像した後でノイズを加えたもの」と仮定する。低次元側の確率分布、滑らかな関数、そして高次元側でのノイズのパラメータは全てEMアルゴリズム (en:EM_algorithm) によって入力データから学習される。
※この「この算法についての解析的アプローチ」の解説は、「自己組織化写像」の解説の一部です。
「この算法についての解析的アプローチ」を含む「自己組織化写像」の記事については、「自己組織化写像」の概要を参照ください。
- この算法についての解析的アプローチのページへのリンク