いわゆる「ターミネーター技術」
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/15 16:18 UTC 版)
「遺伝子組み換え作物」の記事における「いわゆる「ターミネーター技術」」の解説
次世代の種子の発芽抑制技術である。自家受粉する作物では、組換え品種からの契約外の自家採種が行われていることがある。その制限のためと交配による遺伝子拡散の防止ために開発された。この技術のためには3つの系が必要である。 毒素遺伝子は種子成熟の晩期に発現して種子や胚を殺すが、成長・繁殖時期や他の部位では発現してはならない。そのために、胚発生後期に種子特異的に発現するプロモーターとそれを用いて生産される毒素遺伝子。 種子特異的に発現する毒素遺伝子が組み込まれていても、種苗会社が大量に種子生産ができるようにその発現を抑制する系。 種子販売に際して、種子特異的発現できるように毒素遺伝子の抑制を解除するための系。 それらを満たすために、ワタにおける例では次のものが用いられている。 ワタの後期胚形成主要タンパク質(LEA: late embryogenesis abundant protein)遺伝子LEAのプロモーターとサボンソウ(Saponaria officinalis)のリボソーム不活化タンパク質(RIP: ribosome-inactivating protein, EC 3.2.2.22, アミノ酸配列, 塩基配列)かリボヌクレアーゼ(RNase)であるBARNASEを毒素とする。 LEAプロモーターと毒素遺伝子の間を分断して転写や翻訳を阻害する分断配列。 分断する配列を条件的に除去するための系として配列特異的組換え酵素とその標的配列。 例としてRIPとCreとloxPとtetRとtetOの系について説明する。「目的遺伝子 + (LEAプロモーター + loxP + 分断配列 + loxP + RIP) + (構成的プロモーター + tetR) + (構成的プロモーター + 複数のtetO + cre)」というカセットを植物体に導入しておく。構成的プロモーターによりリプレッサーであるTetRが常に生産されているため、オペレーター配列であるtetOにTetRが結合してcreは転写・翻訳されない。その結果、後期胚形成期であっても、分断配列によって毒素RIPが生産されないので正常な胚発生が進行する。そのため、種苗会社はこの植物の種子を増やすことができる。しかし、種子を出荷する前にインデューサーであるドキシサイクリンで処理するとTetRが不活化してtetOから遊離してCreが生産される。その結果、順方向に並んでいる二つのloxPの間でCreにより配列特異的な組換えが生じて「目的遺伝子 + (LEAプロモーター + loxP + RIP) + (構成的プロモーター + tetR) + (構成的プロモーター + 複数のtetO + cre)」という構造に変換する。LEAプロモーター + loxP + RIPの組み合わせは転写と翻訳を阻害されない。この構造を持つ種子は正常に発芽・生育・開花できるが、受精後の種子形成の最終段階である後期胚形成期に胚においてのみ転写活性を持つLEAプロモーターにより、胚においてRIPが生産され胚は死滅する。その結果、次世代の種子は発芽できなくなる。 この技術に関しては反対意見が強いために現時点においては栽培されている遺伝子組換え作物には利用されていない。なお、「ターミネーター技術」とは遺伝子組換え作物反対派から命名された通称である。
※この「いわゆる「ターミネーター技術」」の解説は、「遺伝子組み換え作物」の解説の一部です。
「いわゆる「ターミネーター技術」」を含む「遺伝子組み換え作物」の記事については、「遺伝子組み換え作物」の概要を参照ください。
- いわゆる「ターミネーター技術」のページへのリンク