酸素 歴史

酸素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/01 00:48 UTC 版)

歴史

初期の実験

フィロンの実験は後の研究者たちに影響を与えた

燃焼と空気の間には何らかの関係があるのでは、と行われたもっとも古い実験のひとつは、紀元前2世紀の古代ギリシアビザンチウムのフィロンが著した『プネウマティカ(Pneumatica)』に記録されている。器に据えた蝋燭を灯してガラスの壷を上から被せ、壷の口が漬かるまで器に水を満たす。すると、壷の中へ水が吸い上がる様子を観察することができた[50]。フィロンは、壷の中の空気が「四大元素の火」に変換され、これが壷のガラス壁を透過して逃げたと考えた。それから遥か時代が下った中世のルネサンス期に、レオナルド・ダ・ヴィンチはフィロンの実験に考察を加え、燃焼や呼吸を通じて空気が一部消費されると考えた[51]

17世紀後半にロバート・ボイルは、燃焼には空気が必要不可欠であることを立証した。これをジョン・メーヨーは、必要なものは彼が「硝気精[52](spiritus nitroaereus、nitroaereus)」と名づけた空気の構成要素だという説を提唱した[53]。メイヨーの実験はフィロンと同じように水で封じた逆さの容器にそれぞれ蝋燭とマウスを入れ、どちらも水位が14分の1程度上昇したことを確認した[54]。これから、メイヨーは燃焼と呼吸のいずれでも硝気精が消費されるとの確証を得た。またメイヨーは、アンチモンを加熱すると質量が増えることも確認し、これは金属に硝気精が結合したためと考えた[53]。呼吸については、硝気精はの中で空気から取り出されて血液に受け渡され、動物の体温や筋肉の動きを生み出す反応に使われると考察し[53]、1668年に発表した[54]

フロギストン説

ゲオルク・シュタールはフロギストン説の構築と普及に寄与した

17世紀から18世紀にかけて、酸素はロバート・フックオーレ・ボッシュ英語版ミハイル・ロモノーソフ、ピエール・バイエンらが実験で作り出していたが、いずれもがそれを元素とは認識しなかった[55]。そこには、フロギストン説と呼ばれる燃焼と腐食に関する広く知られた学説が影響を及ぼしていた。

1667年にドイツ錬金術ヨハン・ベッヒャーが発案し、1731年までにゲオルク・シュタールが理論構築したフロギストン説[56]は、可燃物とは燃素(フロギストン)とほかの物質の2つが結合した状態にあり、燃焼が起こると燃素が遊離し、残りの物質もしくは石灰が残るというものだった[51]。この説では、木材や石炭などは燃素の含有率が高く、鉄など不燃性のものはほとんど含まないと考えられた。空気の効果は無視され、わずかに行われた実証試験でも可燃物を燃やすと軽くなるという点から確かに何かが失われているという考察がされたに過ぎず[51]、発生ガスへ意識が向けられることはなかった。このフロギストン説が否定される契機は、金属を空気中で燃やすと重量が増すという報告だった。

発見

カール・ヴィルヘルム・シェーレ。惜しくも酸素発見者の栄誉を逃した

酸素は1771年[2]スウェーデンカール・ヴィルヘルム・シェーレ酸化水銀(II)とさまざまな硝酸塩混合物を加熱する過程で発見した[12][51]。シェーレはこの気体を「火素(fire air)」と名づけ1775年に論文を作成したが、出版社の都合で[2]発表されたのは1777年となった[57]

ジョゼフ・プリーストリー。一般的には彼が酸素の発見者とされる

シェーレが発見を知らしめるのに手間取っていた1774年8月1日イギリスジョゼフ・プリーストリーはガラス管に入れた酸化水銀(II)に日光を照射して得たガスに「脱フロギストン空気(dephlogisticated air)」と命名した[12]。彼はこのガスの中では蝋燭がより明るく燃え、マウスが活発かつ長寿になることを確かめた。さらに自分でこのガスを吸い、「吸い込んだときには普通の空気と大差ないと思ったが、少し後になると呼吸が軽く楽になった」と書き残した[55]。1775年、プリーストリーは新聞紙上にこの発見を発表し、2冊目の著作 Experiments and Observations on Different Kinds of Airでも論述した[51]。このように、彼の発表がシェーレよりも先に行われたため、酸素発見者はプリーストリーということになった。

フランスの高名な化学者アントワーヌ・ラヴォアジエは、のちに自分が新元素を発見していたと主張したが、1774年10月にラヴォアジエはプリーストリーの訪問を受け、ガス発生手段など実験の概要を耳にしている。また、それに先立つ9月30日、プリーストリーは前もって新発見したガスの説明を記した書簡をラヴォアジエに送っているが、ラヴォアジエはこれを受け取っていないと主張した。なおプリーストリーの死後、彼の私物の中から書簡の写しが見つかっている[57]

ラヴォアジエの功罪

アントワーヌ・ラヴォアジエ。旧来のフロギストン説を葬り去った

ラヴォアジエは、厳密な物質量確認を伴う酸化の実験を通じて、燃焼の実態を正しく説明することに貢献した[12]。彼はフロギストン説を否定し、プリーストリーらが発見したガスが元素のひとつであると立証するため、1774年以来行われた実験の追試に乗り出した。

ラヴォアジエは、スズと空気を密閉した容器を加熱しても全体の重さに変化がないことを観測し[12]、開封すると外気が流れ込むことから空気の一部が減少していると確認し、またスズが重くなっていることも計測した。そして、この流入空気質量とスズの質量増分が同じであることを確認した。1777年、彼はこの実験結果などをまとめた書籍『Sur la combustion en général』を発表した[12]。この中でラヴォアジエは、空気は燃焼と呼吸に深く関わるvital airと、これらに関与しないazote古希: ζωτον、「生気のない」の意)」の2種類のガスが混合したものと証明した。azoteはのちに窒素とされた[12]

1777年、ラヴォアジエは「vital air」に、古代ギリシア語ὀξύς(oxys、味覚の酸味を由来とする「鋭い」の意)と -γενής(-genēs、生み出す者を由来とする「製作者」の意)を合成したフランス語「oxygène」という命名を施した[5]。これは、彼が酸素こそすべての酸性の源泉だという誤解を持っていたためこれらの単語が選択されたものだった[58]。のちに、酸性の根本となる元素は水素であることが判明したが、そのころには単語がすでに定着していたため変更はできなかった。

イギリス科学界は、同国人のプリーストリーが分離に成功したガスにこの名称を用いることに反対だったが、1791年に詩人でもあるエラズマス・ダーウィンチャールズ・ダーウィンの祖父)が出版した有名な書籍『植物の園』(The Botanic Garden)の中で、このガスを称賛する詩『oxygen』を載せたため、すでに一般に広まっていたこともあり、「oxygen」の単語は英語に組み込まれてしまった[57]

量産・工業化

ジョン・ドルトン原子論では、当初すべての元素は「単元素」であり、原子比も単純なものであるという仮定があり、水は水素と酸素が1対1のHOというみなしの元で酸素の原子量を8と判断していた[59]。これは1805年にジョセフ・ルイ・ゲイ=リュサックアレクサンダー・フォン・フンボルトによって原子比が1対2に改められ、1811年にアメデオ・アヴォガドロがアボガドロの法則に則って水の正しい構成を解釈した[60]

19世紀には空気の構成も判明してきた。1877年にスイスラウル・ピクテ英語版[61]とフランスのルイ・ポール・カイユテ[61]が相次いで酸素の液体化に成功したと発表し、安定状態での液体酸素はヤギェウォ大学ジグムント・ヴルブレフスキカロル・オルシェフスキ英語版が初めて得た[62]

1891年にはイギリスのジェイムズ・デュワーが研究で用いるに充分な液体酸素の製法を見つけ[23]、1895年にはドイツカール・フォン・リンデとイギリスのウィリアム・ハンプソンがそれぞれ液化分留による商業ベースに乗る量産法を確立した[63]。この酸素を工業的に用いる例として、1901年にはアセチレンと圧縮酸素を用いた溶接法のデモンスチレーションが行われた[63]


注釈

  1. ^ 質量においてはケイ素が次点であり、地殻の27.72 %を占める(ケイ素のイオン半径は酸素の3分の1以下であるため、体積は地殻の0.86 %である)[11]
  2. ^ 地殻の造岩鉱物の92 %はSiO4の四面体を結晶構造の基本単位とする珪酸塩鉱物である[11]
  3. ^ 酸素分子は0.1–0.3 %、水は0.03 %[13]
  4. ^ 原初の地球大気にも、水蒸気が光分解されて発生するメカニズムが指摘されており、ごく微量ながら酸素ガスが存在した可能性はあるが、ほとんどはすぐ酸化反応で消費されるか、オゾンへ変化したものと思われ、いずれにしろ考慮に足る量ではなかった[31]
  5. ^ (0.36 g/分/人) × (60秒/時) × (24時/日) × (365日/年) × (70億人)/1000000 = 13.2億トン

出典

  1. ^ a b c d e f g h 桜井 (1997)、64頁。
  2. ^ a b c d e 玉尾、桜井、福山 (2010)、96-97頁。
  3. ^ a b c d e f g h 「水素」『12996の化学商品』化学工業日報、1996年、233-234頁。ISBN 4-87326-204-6 
  4. ^ 桜井 (1997)、64-65頁。
  5. ^ a b c d 桜井 (1997)、65頁。
  6. ^ 桜井 (1997)、33頁。
  7. ^ リー (1982)、241頁。
  8. ^ リー (1982)、292頁。
  9. ^ Emsley (2001).
  10. ^ 玉尾、桜井、福山 (2010)、付録周期表。
  11. ^ a b c 酒井 2003, pp. 48–49.
  12. ^ a b c d e f g Cook & Lauer (1968).
  13. ^ 酒井 2003, p. 5.
  14. ^ 酒井 2003, pp. 5 & 17.
  15. ^ βカロチンの活性酸素消去能力を測る”. 名古屋大学. 2010年5月28日閲覧。
  16. ^ Molecular Orbital Theory”. Purdue University. 2008年1月28日閲覧。
  17. ^ Pauling, L. (1960). The nature of the chemical bond and the structure of molecules and crystals : an introduction to modern structural chemistry (3rd ed.). Ithaca: Cornell University Press 
  18. ^ 淵田吉男. “第15章 分子の形成と性質” (PDF). 九州大学高等教育総合開発研究センター. 2010年5月28日閲覧。
  19. ^ 薬学用語解説【三重項酸素】”. 財団法人日本薬学会. 2010年5月28日閲覧。
  20. ^ a b Jakubowski, Henry. “Biochemistry Online”. Saint John's University. 2008年1月28日閲覧。
  21. ^ 関山明. “物性物理超入門編 電子とイオン結合と共有結合”. 大阪大学大学院基礎工学研究科. 2010年5月28日閲覧。
  22. ^ 中里和郎. “第1回演習問題” (PDF). 名古屋大学大学院工学研究科. 2010年5月28日閲覧。
  23. ^ a b c Emsley (2001), p. 303.
  24. ^ Demonstration of a bridge of liquid oxygen supported against its own weight between the poles of a powerful magnet”. University of Wisconsin-Madison Chemistry Department Demonstration lab. 2007年12月15日閲覧。
  25. ^ Oxygen's paramagnetism can be used analytically in paramagnetic oxygen gas analysers that determine the purity of gaseous oxygen. (Company literature of Oxygen analyzers (triplet)”. Servomex. 2007年12月15日閲覧。)
  26. ^ 渡邉準. “活性酸素”. 名古屋大学システム自然科学研究科. 2010年5月28日閲覧。
  27. ^ Krieger-Liszkay, Anja (2005). “Singlet oxygen production in photosynthesis”. Journal of Experimental Botanics (Oxford Journals) 56 (411): 337-46. doi:10.1093/jxb/erh237. PMID 15310815. 
  28. ^ Harrison, Roy M. (1990). Pollution: Causes, Effects & Control (2nd ed.). Cambridge: Royal Society of Chemistry. ISBN 0-85186-283-7 
  29. ^ Wentworth, Paul Jr. et al. (2002). “Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation”. Science 298 (5601): 2195-2219. doi:10.1126/science.1077642. PMID 12434011. 
  30. ^ a b c d e f A・オレイニコフ「I. 地球進化を探る 3.地球大気の形成」『地球時計』(第一刷)講談社、1978年、21-35頁。 
  31. ^ オレイニコフ (1978)、31頁。
  32. ^ a b 瀬名、太田 (2000)、19-21頁。
  33. ^ a b 瀬名、太田 (2000)、31-35頁。
  34. ^ Evans, David Hudson; Claiborne, James B. (2006). The Physiology of Fishes. CRC Press. pp. 88. ISBN 0-8493-2022-4 
  35. ^ Fenical, William (September 1983). “Marine Plants: A Unique and Unexplored Resource”. Plants: the potentials for extracting protein, medicines, and other useful chemicals (workshop proceedings). DIANE Publishing. p. 147. ISBN 1428923977. https://books.google.co.jp/books?id=g6RfkqCUQyQC&pg=PA147&redir_esc=y&hl=ja 
  36. ^ Brown, Theodore L.; LeMay, Burslen (2003). Chemistry: The Central Science. Prentice Hall/Pearson Education. p. 958. ISBN 0130484504 
  37. ^ Raven (2005), pp. 115-127.
  38. ^ Raven 2005
  39. ^ a b c 桜井 (1997)、68頁。
  40. ^ a b c Stwertka, Albert (1998). Guide to the Elements (revised ed.). Oxford University Press. pp. 48-49. ISBN 0-19-508083-1 
  41. ^ a b c Emsley (2001), p. 298.
  42. ^ 瀬名らp.71-74 2.危険なエネルギープラント ミトコンドリアの姿と働き 酸素と活性酸素
  43. ^ 古市尚高. “植物病原菌の防御反応の誘導機構” (PDF). 新潟大学農学部. 2010年5月14日閲覧。
  44. ^ 吉岡博文・山溝千尋. “植物における活性酸素の役割とその誘導” (PDF). 文部科学省委託研究開発事業. 2010年5月14日閲覧。
  45. ^ 東邦大学医学部 「呼吸器系」ユニット講義録8”. 2012年7月1日閲覧。
  46. ^ Freeman, Scott (2005). Biological Science, 2nd. Upper Saddle River: Prentice Hall. pp. 214, 586. ISBN 0-13-140941-7 
  47. ^ Campbell, Neil A.; Reece, Jane B. (2005). Biology (7th ed.). San Francisco: Pearson - Benjamin Cummings. pp. 522-523. ISBN 0-8053-7171-0 
  48. ^ 長谷川政美、「系統樹をさかのぼって見えてくる進化の歴史」p102ほか、2014年10月25日、ベレ出版、ISBN 978-4-86064-410-9
  49. ^ 酸素に富む地球環境の持続期間は約10億年 東邦大学
  50. ^ Jastrow, Joseph (1936). Story of Human Error. Ayer Publishing. p. 171. ISBN 0836905687. https://books.google.co.jp/books?id=tRUO45YfCHwC&pg=PA171&lpg=PA171&redir_esc=y&hl=ja 
  51. ^ a b c d e Cook & Lauer (1968), p. 499.
  52. ^ 高橋士郎. “空気の発見”. 多摩美術大学. 2010年5月28日閲覧。
  53. ^ a b c Britannica contributors (1911). “John Mayow”. Encyclopaedia Britannica (11th ed.). http://www.1911encyclopedia.org/John_Mayow 2007年12月16日閲覧。 
  54. ^ a b World of Chemistry contributors (2005). “John Mayow”. World of Chemistry. Thomson Gale. http://www.bookrags.com/John_Mayow 2007年12月16日閲覧。 
  55. ^ a b c d e Emsley (2001), p. 299.
  56. ^ Morris, Richard (2003). The last sorcerers: The path from alchemy to the periodic table. Washington, D.C.: Joseph Henry Press. ISBN 0309089050 
  57. ^ a b c Emsley (2001), p. 300.
  58. ^ a b Parks, G. D.; Mellor, J. W. (1939). Mellor's Modern Inorganic Chemistry (6th ed.). London: Longmans, Green and Co 
  59. ^ DeTurck, Dennis; Gladney, Larry and Pietrovito, Anthony (1997年). “The Interactive Textbook of PFP96”. University of Pennsylvania. 2008年1月28日閲覧。
  60. ^ Roscoe, Henry Enfield; Schorlemmer, Carl (1883). A Treatise on Chemistry. D. Appleton and Co.. pp. 38 
  61. ^ a b Daintith, John (1994). Biographical Encyclopedia of Scientists. CRC Press. p. 707. ISBN 0750302879 
  62. ^ Poland - Culture, Science and Media. Condensation of oxygen and nitrogen. Retrieved on 2008-10-04.
  63. ^ a b How Products are Made contributors (2002). “Oxygen”. How Products are Made. The Gale Group, Inc. http://www.answers.com/topic/oxygen 2007年12月16日閲覧。 
  64. ^ a b 大陽日酸:事業紹介:酸素O2”. 大陽日酸. 2010年7月11日閲覧。
  65. ^ 日本国 経済産業省・化学工業統計月報
  66. ^ Chieh, Chung. “Bond Lengths and Energies”. University of Waterloo. 2007年12月16日閲覧。
  67. ^ 桜井 (1997)、66頁。
  68. ^ 桜井 (1997)、67頁。
  69. ^ Stwertka, Albert (1998). Guide to the Elements (Revised ed.). Oxford University Press, p.49. ISBN 0-19-508083-1.
  70. ^ a b Cacace, Fulvio; Giulia de Petris, and Anna Troiani (2001). "Experimental Detection of Tetraoxygen". Angewandte Chemie International Edition 40 (21): 4062-65. doi:10.1002/1521-3773(20011105)40:21<4062::AID-ANIE4062>3.0.CO;2-X.
  71. ^ a b Ball, Phillip (2001-09-16). "New form of oxygen found". Nature News. Retrieved 2008-01-09.
  72. ^ Lundegaard, Lars F.; Weck, Gunnar; McMahon, Malcolm I.; Desgreniers, Serge and Loubeyre, Paul (2006). "Observation of an O8 molecular lattice in the phase of solid oxygen". Nature 443: 201-04. doi:10.1038/nature05174. Retrieved 2008-01-10., 201-04
  73. ^ Desgreniers, S; Vohra, Y. K. & Ruoff, A. L. (1990). "Optical response of very high density solid oxygen to 132 GPa". J. Phys. Chem. 94: 1117-22. doi:10.1021/j100366a020.
  74. ^ Shimizu, K.; Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. (1998). "Superconductivity in oxygen". Nature 393: 767-69. doi:10.1038/31656.
  75. ^ a b Acott, C. (1999). “Oxygen toxicity: A brief history of oxygen in diving”. South Pacific Underwater Medicine Society journal 29 (3). ISSN 0813-1988. OCLC 16986801. http://archive.rubicon-foundation.org/6014 2008年9月21日閲覧。. 
  76. ^ Cook & Lauer (1968), p. 511.
  77. ^ Drack AV (1998). “Preventing blindness in premature infants”. N. Engl. J. Med. 338 (22): 1620-1. doi:10.1056/NEJM199805283382210. PMID 9603802. 
  78. ^ 2005年 代表選抜試験で出題された問題とその解説”. 国際生物学オリンピック日本委員会. 2010年5月28日閲覧。
  79. ^ Morgenthaler, G. W.; Fester, D. A.; Cooley, C. G. (1994). “As assessment of habitat pressure, oxygen fraction, and EVA suit design for space operations”. Acta Astronaut 32 (1): 39-49. doi:10.1016/0094-5765(94)90146-5. PMID 11541018. 
  80. ^ Wade, Mark (2007年). “Space Suits”. Encyclopedia Astronautica. 2007年12月16日閲覧。
  81. ^ 鳥居啓之(川崎重工業). “船外活動技術における生命維持技術の検討”. 宇宙航空研究開発機構. 2010年5月28日閲覧。
  82. ^ 宇宙服と船外活動”. 宇宙航空研究開発機構. 2010年5月28日閲覧。
  83. ^ a b Wilmshurst, P. (1998). “Diving and oxygen”. BMJ 317 (7164): 996-999. PMC 1114047. PMID 9765173. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1114047/. 
  84. ^ Donald, Kenneth W. (1992). Oxygen and the Diver. England: SPA in conjunction with K. Donald. ISBN 1854211765 
  85. ^ Donald, Kenneth W. (1947). “Oxygen Poisoning in Man: Part I”. British Medical Journal 1 (4506): 667-672. doi:10.1136/bmj.1.4506.667. PMC 2053251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2053251/. 
  86. ^ Donald, K. W. (1947). “Oxygen Poisoning in Man: Part II”. British Medical Journal 1 (4507): 712-717. doi:10.1136/bmj.1.4507.712. PMC 2053400. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2053400/. 
  87. ^ Werley, Barry L., ed. (1991). "Fire Hazards in Oxygen Systems". ASTM Technical Professional training. Philadelphia: ASTM International Subcommittee G-4.05.
  88. ^ a b 駒宮功額「過剰酸素中の火災・爆発」『安全工学』第37巻第2号、安全工学会、1998年、122-127頁、doi:10.18943/safety.37.2_122 
  89. ^ 大気中酸素濃度の減少量から二酸化炭素の陸域生物圏吸収量の推定に成功国立環境研究所






酸素と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「酸素」の関連用語

酸素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



酸素のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの酸素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS