プロテアーゼ プロテアーゼの生物多様性

Weblio 辞書 > 固有名詞の種類 > 自然 > 物質 > 化合物 > 酵素 > プロテアーゼの解説 > プロテアーゼの生物多様性 

プロテアーゼ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/08 09:01 UTC 版)

プロテアーゼの生物多様性

プロテアーゼは、原核生物から真核生物ウイルスに至るまで、あらゆる生物に存在している。これらの酵素は、食物タンパク質の単純な消化から高度に制御されたカスケード (たとえば、血液凝固カスケード、補体系アポトーシス経路、無脊椎動物のプロフェノールオキシダーゼ活性化カスケード) まで、多くの生化学的反応に関与している。プロテアーゼは、タンパク質のアミノ酸配列に応じて、特定のペプチド結合を切断する (限定的なタンパク質分解) か、またはペプチドをアミノ酸に完全に分解する (無制限なタンパク質分解) かのいずれかである。その活性は、破壊的な変化  (タンパク質の機能を破壊するか、またはその主成分に消化する)、機能の活性化、またはシグナル伝達経路のシグナルとなることがある。

植物

植物性レンネットと呼ばれるプロテアーゼを含む植物樹液は、ヨーロッパや中東で何百年にもわたってコーシャチーズやハラールチーズの製造に使用されてきた。ウィザニア・コアギュランス (Withania coagulans (英語版)) から採れる植物性レンネットは、インド亜大陸で消化不良や糖尿病のアーユルヴェーダ治療薬として何千年もの間使用されてきた。またパニールの原料としても使用される。

植物ゲノムは、大部分は未知の機能を持っている何百ものプロテアーゼを符号化している。機能がわかっているものは、主に発生調節に関与している[12]。植物プロテアーゼは光合成の調節にも関与している[13]

植物には、プロテアーゼを豊富に含むものがある。

動物

プロテアーゼは、さまざまな代謝プロセスのために生物全体で使用されている。胃に分泌される酸性プロテアーゼ (ペプシンなど) や十二指腸に存在するセリンプロテアーゼ (トリプシンキモトリプシン) によって食物中のタンパク質を消化することができる。血液中の血清中に存在するプロテアーゼ (トロンビンプラスミンハーゲマン因子など) は、血液凝固や血栓の溶解、および免疫系の正しい働きに重要な役割を果たす。その他のプロテアーゼ (エラスターゼ、カテプシンG) は白血球に存在し、代謝制御においていくつかの異なる役割を果たす。ヘビ毒の中には、マムシ血毒素のようなプロテアーゼもあり、犠牲者の血液凝固カスケードを妨害する。プロテアーゼは、ホルモン、抗体、または他の酵素のような重要な生理学的役割を果たしている他のタンパク質の寿命を決定する。これは、生物の生理学における最も速い「スイッチオン」と「スイッチオフ」の調節機構の一つである。

複雑な協調作用により、プロテアーゼはカスケード英語版反応として進行することがあり、その結果、生理学的シグナルに対する生物の応答の迅速かつ効率的な増幅される。

バクテリア

バクテリア (bacteria、細菌)は、タンパク質のペプチド結合を加水分解するためにプロテアーゼを分泌し、タンパク質を構成アミノ酸に分解する。タンパク質のリサイクルの中で、地球規模の炭素窒素の循環にとって細菌や真菌のプロテアーゼは特に重要で、そのような活性はこれらの生物の栄養シグナルによって制御される傾向がある[14]。土壌中に存在する何千もの種の間でプロテアーゼ活性の栄養制御による正味の影響は、タンパク質が炭素、窒素、または硫黄の制限に応じて分解されるように、全体的な微生物群レベルで観察することができる[15]

細菌には、変性タンパク質 (折りたたまれないまたは過って折りたたまれたタンパク質) を分解することにより、一般的なタンパク質の品質調整に関与するプロテアーゼ (たとえばAAA+プロテアソーム) が含まれている。

分泌された細菌性プロテアーゼはまた、外毒素として作用する可能性があり、細菌性病因英語版病原因子 (たとえば黄色ブドウ球菌外毒素) の一例となりうる。細菌性外毒素プロテアーゼは、細胞外構造を破壊する。

納豆菌は、フィブリン (血栓の主成分) を溶解するナットウキナーゼを含有する。

ウイルス

一部のウイルスのゲノムは、1つの巨大なポリタンパク質を符号化しており、これを機能的な単位に切断するためにプロテアーゼが必要である (例えば、C型肝炎ウイルスピコルナウイルス)。これらのプロテアーゼ (例えばTEVプロテアーゼ) は高い特異性を持ち、非常に限られた範囲で基質配列のセットのみを切断する[16]。したがって、これらのプロテアーゼは、プロテアーゼ阻害剤の一般的な標的である[17][18]

菌類


  1. ^ a b King, John V.; Liang, Wenguang G.; Scherpelz, Kathryn P.; Schilling, Alexander B.; Meredith, Stephen C.; Tang, Wei-Jen (2014-07-08). “Molecular basis of substrate recognition and degradation by human presequence protease”. Structure 22 (7): 996–1007. doi:10.1016/j.str.2014.05.003. ISSN 1878-4186. PMC 4128088. PMID 24931469. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128088/. 
  2. ^ a b Shen, Yuequan; Joachimiak, Andrzej; Rosner, Marsha Rich; Tang, Wei-Jen (2006-10-19). “Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism”. Nature 443 (7113): 870–874. doi:10.1038/nature05143. ISSN 1476-4687. PMC 3366509. PMID 17051221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366509/. 
  3. ^ Radzicka A, Wolfenden R (July 1996). “Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases”. JACS 118 (26): 6105–6109. doi:10.1021/ja954077c. 
  4. ^ Oda, Kohei (2012). “New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases”. Journal of Biochemistry 151 (1): 13–25. doi:10.1093/jb/mvr129. PMID 22016395. 
  5. ^ Rawlings ND, Barrett AJ (February 1993). “Evolutionary families of peptidases”. The Biochemical Journal 290 ( Pt 1) (Pt 1): 205–18. doi:10.1042/bj2900205. PMC 1132403. PMID 8439290. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1132403/. 
  6. ^ a b Rawlings ND, Barrett AJ, Bateman A (November 2011). “Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes”. The Journal of Biological Chemistry 286 (44): 38321–8. doi:10.1074/jbc.M111.260026. PMC 3207474. PMID 21832066. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207474/. 
  7. ^ a b Rawlings ND, Barrett AJ, Bateman A (January 2010). “MEROPS: the peptidase database”. Nucleic Acids Res. 38 (Database issue): D227–33. doi:10.1093/nar/gkp971. PMC 2808883. PMID 19892822. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808883/. 
  8. ^ Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson (2007). Robbins Basic Pathology (8th ed.). Philadelphia: Saunders. pp. 122. ISBN 978-1-4160-2973-1 
  9. ^ 「プロテアーゼ」、『岩波生物学辞典』第4版、岩波書店、1996年。
  10. ^ Rodriguez J, Gupta N, Smith RD, Pevzner PA (January 2008). “Does trypsin cut before proline?”. Journal of Proteome Research 7 (1): 300–5. doi:10.1021/pr0705035. PMID 18067249. 
  11. ^ Renicke C, Spadaccini R, Taxis C (2013-06-24). “A tobacco etch virus protease with increased substrate tolerance at the P1' position”. PLOS One 8 (6): e67915. doi:10.1371/journal.pone.0067915. PMC 3691164. PMID 23826349. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691164/. 
  12. ^ van der Hoorn RA (2008). “Plant proteases: from phenotypes to molecular mechanisms”. Annual Review of Plant Biology 59: 191–223. doi:10.1146/annurev.arplant.59.032607.092835. hdl:11858/00-001M-0000-0012-37C7-9. PMID 18257708. http://pubman.mpdl.mpg.de/pubman/item/escidoc:1221609/component/escidoc:1221608/vanderhoorn_ann_rev_plant_biol_2008.pdf. 
  13. ^ Zelisko A, Jackowski G (October 2004). “Senescence-dependent degradation of Lhcb3 is mediated by a thylakoid membrane-bound protease”. Journal of Plant Physiology 161 (10): 1157–70. doi:10.1016/j.jplph.2004.01.006. PMID 15535125. 
  14. ^ Sims GK (2006). “Nitrogen Starvation Promotes Biodegradation of N-Heterocyclic Compounds in Soil”. Soil Biology & Biochemistry 38 (8): 2478–2480. doi:10.1016/j.soilbio.2006.01.006. https://naldc-legacy.nal.usda.gov/naldc/download.xhtml?id=6863&content=PDF. 
  15. ^ Sims GK, Wander MM (2002). “Proteolytic activity under nitrogen or sulfur limitation”. Appl. Soil Ecol. 568: 1–5. 
  16. ^ Tong, Liang (2002). “Viral Proteases”. Chemical Reviews 102 (12): 4609–4626. doi:10.1021/cr010184f. PMID 12475203. 
  17. ^ Skoreński M, Sieńczyk M (2013). “Viral proteases as targets for drug design”. Current Pharmaceutical Design 19 (6): 1126–53. doi:10.2174/13816128130613. PMID 23016690. 
  18. ^ Yilmaz NK, Swanstrom R, Schiffer CA (July 2016). “Improving Viral Protease Inhibitors to Counter Drug Resistance”. Trends in Microbiology 24 (7): 547–557. doi:10.1016/j.tim.2016.03.010. PMC 4912444. PMID 27090931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912444/. 
  19. ^ Barrett, Alan J; Rawlings, Neil D; Woessnerd, J Fred (2004). Handbook of proteolytic enzymes (2nd ed.). London, UK: Elsevier Academic Press. ISBN 978-0-12-079610-6 
  20. ^ Proteases in biology and medicine. London: Portland Press. (2002). ISBN 978-1-85578-147-4 
  21. ^ Feijoo-Siota, Lucía; Villa, Tomás G. (28 September 2010). “Native and Biotechnologically Engineered Plant Proteases with Industrial Applications”. Food and Bioprocess Technology 4 (6): 1066–1088. doi:10.1007/s11947-010-0431-4. 
  22. ^ Southan C (July 2001). “A genomic perspective on human proteases as drug targets”. Drug Discovery Today 6 (13): 681–688. doi:10.1016/s1359-6446(01)01793-7. PMID 11427378. 


「プロテアーゼ」の続きの解説一覧




プロテアーゼと同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「プロテアーゼ」の関連用語

プロテアーゼのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



プロテアーゼのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのプロテアーゼ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS