電気ブレーキとの同期・連動
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/15 08:31 UTC 版)
「電磁直通ブレーキ」の記事における「電気ブレーキとの同期・連動」の解説
電磁直通ブレーキで最大勢力となった、WABCOのSMEE/HSCブレーキには、発電ブレーキや回生ブレーキとの連係動作を円滑に、そして容易な操作で実現可能とするために、様々な工夫が凝らされている。 まず、これらのブレーキでは、電気ブレーキの指令時に制御器から電空制御器に対してもブレーキ指令が行われ、電気ブレーキ動作中は常時直通管が加圧され続けるようになっている。これだけでは、制動力過大による急停車などの異常動作を引き起こしてしまう。だが、SMEE/HSCブレーキの場合はこの電磁給排弁と中継弁の間をつなぐSAP管に、上述の締切電磁弁および射込弁と呼ばれる特殊な弁を並列で挿入することでスムーズなブレーキタイミングの同期・連係動作を可能としている。 締切電磁弁はこの電空同期システムの中核を担う機構である。この電磁弁は制御器内のスイッチが切り替わり電気ブレーキが立ち上がるまでの間は消磁されており、電磁給排弁から送り込まれた空気圧は開放状態のこの電磁弁を通ってそのまま中継弁に流される。だが、一旦電気ブレーキが機能し始めると、この弁の電磁回路は制御器内のリミッタ・リレー(限流継電器)の働きで励磁され、それによって弁が動作してSAP管を高速閉鎖する、という役割を担う。この機構により、電気ブレーキの宿命であるブレーキの立ち上がりの遅れを最小限に抑制している。しかもこの機構は、電気ブレーキが機能しない場合や締切電磁弁が故障した場合には開放状態で固定されるため、そのまま通常の空気ブレーキが動作するという、フェイルセーフ機構をも実現している。 こうして締切電磁弁の働きによってスムーズに立ち上がった電気ブレーキが、その働きによって列車を10 - 20km/h程度まで減速すると、今度は発生電圧の低下等によって制動力が失効し、再度空気ブレーキに切り替える必要が生じる。この際、列車速度の低下に比例して電動機を流れる電流量も低下することから、これを検出した制御器内のリミッタ・リレーによって締切電磁弁が消磁されてSAP管が開かれ、空気ブレーキが動作することになる。しかし、単純に締切電磁弁を開いただけではブレーキシリンダーが動作して有効になるまでタイムラグが発生し、しかも一旦制動力が途切れるため、切り替えの瞬間に大きな衝撃が発生することにもなる。 この問題を解決するのが射込弁(Inshot Valve)あるいは連動込め弁と呼ばれる装置である。射込弁は電空切り替えに伴うブレーキのタイムラグやショックを緩和する目的で搭載されるきわめてコンパクトな弁装置である。この装置は、電気ブレーキが動作し、かつ締切電磁弁が閉鎖している場合にSAP管からの空気圧を降圧して中継弁に供給し、ブレーキシューが車輪ないしはブレーキディスク等に接触する程度の位置にブレーキシリンダーを保持させ続ける、という役割を担っている。これにより、締切電磁弁が開いた直後からブレーキシューが制動ポジションに位置しているためただちに所要の制動力が得られ、上述した問題が回避可能となる。 こうして、締切電磁弁と射込弁の連携動作によって、切り替えに伴う衝動をほぼ完全に抑制した、スムーズかつ確実な減速・停車が実現される。この間、乗務員は電気ブレーキに対する指令を行うだけであり、空気ブレーキの操作は一切行う必要がない。 この巧妙にして操作が容易、しかも安全性が高いという、極めて完成度の高い機構こそが、日本とアメリカ、特に日本でSMEE/HSC系電磁直通ブレーキが市場を事実上独占しえた最大の要因であった。
※この「電気ブレーキとの同期・連動」の解説は、「電磁直通ブレーキ」の解説の一部です。
「電気ブレーキとの同期・連動」を含む「電磁直通ブレーキ」の記事については、「電磁直通ブレーキ」の概要を参照ください。
- 電気ブレーキとの同期連動のページへのリンク