概複素構造
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
数学における多様体の概複素構造(がいふくそこうぞう、almost complex structure)は、多様体の各点での接ベクトル空間が(滑らかな)複素構造を持つことを言う。1つの多様体に対して複数の概複素構造が入る場合がある。また、複素解析的多様体は必ず概複素構造をもつ一方で、概複素構造を持ちながら複素解析的多様体とならないものが存在する。概複素多様体はシンプレクティック幾何学に重要な応用を持つ。
この概念は、1940年代のチャールズ・エーレスマン(Charles Ehresmann)とハインツ・ホップ(Heinz Hopf)による。
定義
滑らかな多様体 M に対し、接バンドル TM 上の自己同型写像 J: TM → TM で
- Newlander, A.; Nirenberg, L. (1957), “Complex analytic coordinates in almost complex manifolds”, Annals of Mathematics. Second Series 65 (3): 391–404, doi:10.2307/1970051, ISSN 0003-486X, JSTOR 1970051, MR0088770
- da Silva, A.C., Lectures on Symplectic Geometry, Springer (2001). ISBN 3-540-42195-5. Information on compatible triples, Kähler and Hermitian manifolds, etc.
- Wells, R.O., Differential Analysis on Complex Manifolds, Springer-Verlag, New York (1980). ISBN 0-387-90419-0. Short section which introduces standard basic material.
概複素多様体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/15 14:16 UTC 版)
詳細は「概複素多様体」を参照 実多様体である概複素多様体は、GLn(C)-構造を持ってる(G-構造(英語版)の意味で)。 つまり、接バンドルが線形複素構造(英語版)を持っている。 具体的には、これは二乗が −I となるような接バンドルの自己準同型である;この自己準同型は、複素数 i を賭けることに類似していて、J で表します(単位行列の I との混乱を避けるため)。概複素多様体は必然的に偶数次元である。 概複素構造は、複素構造よりも弱く、任意の複素構造は概複素構造であるが、すべての概複素構造が複素構造から発生するわけではない。注意すべきは、すべての偶数次元の実多様体は局所座標により定義される概複素構造を持っていることで、問題はこの複素構造が大域的に定義できるかどうかである。大域的に定義できた複素構造から自動的にでてくる概複素構造のことを可積分であると言い、また概複素構造と区別して複素構造を特定したい時は、可積分 な複素構造と言う。可積分な複素構造に対して、ナイエンハンステンソル(Nijenhuis tensor)がゼロになる。ナイエンハンステンソルは、ベクトル場のペア X,Y の上で下記の関係式により定義される。 N J ( X , Y ) = [ X , Y ] + J [ J X , Y ] + J [ X , J Y ] − [ J X , J Y ] {\displaystyle N_{J}(X,Y)=[X,Y]+J[JX,Y]+J[X,JY]-[JX,JY]} 例えば、6次元球面 S6 は、8元数の単位球面における i の直交補空間であるという事実から出てくる自然な概複素構造を持っている。しかしこれは複素構造ではない(現在、6次元球面は複素構造を持っているか否か分かっていない)。 一般に、概複素構造を使い、正則写像の意味づけをすることは可能で、多様体上の正則座標の存在するかと問うことは可能である。正則座標が存在することと、多様体が(座標が定義するような)複素多様体であるという事と同値である。 接バンドルと複素数のテンソル積をとると、複素化された 接バンドルを得て、その上では複素数との積が意味を持つ。このことは、単に実多様体から始めた場合でさえ、複素化された接バンドルを得ることは可能である。概複素多様体の固有値は ±i で、固有空間は部分バンドルを形成し、T 0, 1M および T 1, 0M と書く。ニューランダー-ニーレンバーグの定理は、概複素構造がその部分バンドルが対合的(involutive)、つまりベクトル場のリーブラケットの下に閉じている時は、複素多様体となることを言っている。この概複素多様体のことを可積分であると言う。
※この「概複素多様体」の解説は、「複素多様体」の解説の一部です。
「概複素多様体」を含む「複素多様体」の記事については、「複素多様体」の概要を参照ください。
- 概複素多様体のページへのリンク